APPLICATION OF SHUFFLED FROG LEAPING ALGORITHM FOR ECONOMIC DISPATCH WITH MULTIPLE FUEL OPTIONS

This thesis is presented in partial fulfillment for the award of the

Bachelor of Engineering (HONS) Electrical

MUHAMMAD AKIF BIN ABU BAKAR FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

JULY 2016

ACKNOWLEDGEMENT

First and foremost, all praise to Allah that allowed me to finally complete this thesis for my final year project. I feel so grateful for His blessing and Alhamdulillah I am able to finish this project on time.

I would like to expand my deepest gratitude to all those who have directly and indirectly guided me in completing this project especially to Prof. Madya Bibi Norasiqin binti Sheikh Rahimullah, my supervisor. Deepest thanks to her for the guidance and assistance that helped me to successfully complete this project. With her supervision, many aspects regarding on this project have been explored and all the problems arise were able to be solved. Besides that, her sharing of knowledge, ideas and support has contributed to the completion of this thesis project within stipulated time.

To my classmates and course mates, I am grateful for their assistance by giving me ideas and information regarding this project. Nevertheless, I am really grateful to be blessed with such supportive parents, Abu Bakar bin Sabran and Puteri Noorhayanum binti Bahrun and also my lovely family members who are continuously supporting me with their endless motivation throughout my studies. I am really thankful for the motivation and suggestion provided to improve this project from time to time.

Thank You.

ABSTRACT

This thesis discusses about an alternative approach towards solving economic dispatch problem with multiple fuel options using shuffled frog leaping algorithm (SFLA). Thermal unit with multiple fuel option is expressed as a segmented piecewise quadratic function. This study proposes the SFLA method to determine the optimal combination of power outputs of the generating units with the most minimum fuel cost while taking into considerations the constraints of the generating units. The proposed method in solving economic dispatch problem combines the evolutionary algorithm with analytical approach is capable in performing much better in directing the search towards the optimal region. Simulations were conducted by applying the SFLA method to solve for the economic dispatch problem of ten units with multiple fuel options. Based on the results obtained, it shows that the SFLA method managed to solve the economic dispatch problems with multiple fuel options.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1	BACKGROUND OF STUDY1			
1.2	PROBLEM STATEMENT			
1.3	SIGNIFICANT OF STUDY2			
1.4	OBJECTIVES2			
1.5	SCOPE OF WORK			
1.6	THESIS ORGANIZATION			
CHAPTER 2: LITERATURE REVIEW				
2.1	INTRODUCTION			
2.2	ECONOMIC DISPATCH WITH MULTIPLE FUEL OPTIONS			
2.3	TECHNIQUE TO SOLVE NON-SMOOTH ECONOMIC DISPATCH			
	PROBLEMS			
2.3	PARTICLE SWARM OPTIMIZATION (PSO)			
2.3	GENETIC ALGORITHM (GA)7			
2.3	HIERARCHICAL METHOD (HM)7			
2.3	HOPFIELD NEURAL NETWORK (HNN)			
2.4	SHUFFLED FROG LEAPING ALGORITHM (SFLA) IN SOLVING VARIOUS			
	PROBLEM9			
CHAPTER 3: ECONOMIC DISPATCH WITH MULTIPLE FUEL OPTIONS				
	PROBLEM FORMULATION			
3.1	INTRODUCTION10			
3.2	ECONOMIC DISPATCH PROBLEM WITH MULTIPLE FUEL OPTIONS10			
CHAPTER 4: METHODOLOGY				
4.1	INTRODUCTION13			

4.2	COMBINATION GENETIC ALGORITHM (GA) AND PARTICLE SWARM			
	OPT	TIMIZATION (PSO) METHOD	13	
4.3	SHU	UFFLED FROG LEAPING ALGORITHM (SFLA)	15	
4.3	3.1	STEPS IN PERFORMING SFLA	16	
4.3	3.2	LOCAL SEARCH PROCESS IN SFLA	19	
4.4	SFL	LA FOR ECONOMIC DISPTACH PROBLEM WITH MULTI	PLE FUEL	
	ОРТ	TIONS	22	
CHAP	FER S	5: RESULTS AND DISCUSSION		
5.1	INT	TRODUCTION	26	
5.2	SFL	LA PARAMETER SETTING	26	
5.3	DAT	TA AND RESULTS FOR TEN GENERATING UNITS WITH	MULTIPLE	
	FUE	EL OPTIONS	27	
5.3	3.1	VARYING PARAMETER: ITERATIONS	34	
5.3	3.2	VARYING PARAMETER: POPULATION	37	
CHAP	FER (6: CONCLUSION AND RECOMMENDATION		
6.1	CON	NCLUSION	39	
6.2	REC	COMMENDATIONS	40	
REFER	ENCE	ES	41	