CO-PYROLYSIS OF ORANGE PEEL AND POLYSTYRENE FOR BIO OIL PRODUCTION

FARAH NUR SYAHIRA BINTI NORDIN

BACHELOR OF CHEMICAL ENGINEERING (ENVIRONMENT) WITH HONOURS

UNIVERSITI TEKNOLOGI MARA

2022

CO-PYROLYSIS OF ORANGE PEEL AND POLYSTYRENE FOR BIO OIL PRODUCTION

By

FARAH NUR SYAHIRA BINTI NORDIN

This report is submitted in partial fulfillment of the requirements needed for the award of Bachelor of Chemical Engineering (Environment) with Honours

CENTRE FOR CHEMICAL ENGINEERING STUDIES UNIVERSITI TEKNOLOGI MARA

AUG 2022

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah SWT for allowing me to embark on my bachelor's degree and complete this long and challenging journey. My gratitude and thanks go to my supervisor Dr. Hamizura Hassan, for her compassion in teaching and supervising this study effort from Oct 2021 to Aug 2022.

My appreciation goes to all lecturers and staff of the laboratory who provided the facilities and assistance during sampling. Special thanks to my classmate and friends for helping me with this project. My appreciation also goes to everyone directly or indirectly engaged in this adventure.

Finally, this thesis is dedicated to my dear father and mother for their vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENTS

AUT	HOR'S DECLARATION	i
SUP	ERVISOR'S CERTIFICATION	ii
COC	ORDINATOR'S CERTIFICATION	iii
ACK	NOWLEDGEMENT	iv
TAB	LE OF CONTENTS	v
LIST OF TABLES		vii
LIST	TOF FIGURES	viii
LIST	T OF SYMBOLS	ix
LIST	COF ABBREVIATIONS	X
ABS	TRACT	xii
CHA	PTER ONE INTRODUCTION	13
1.1	Research Background	13
1.2	Problem statement	15
1.3	Objectives	17
1.4	Scope of Work	17
CHA	PTER TWO LITERATURE REVIEW	18
2.1	Biomass	18
2.2	Orange Peel	18
2.3	Plastic Waste	20
2.4	Polystyrene	21
2.5	Pyrolysis	22
2.6	Co-pyrolysis	23
	2.6.1 Blending ratio of biomass/plastic	24
	2.6.2 Reaction temperature for co-pyrolysis	27
2.7	Chemical composition of bio-oil obtained from pyrolysis and c	o-pyrolysis of
	biomass and plastic	28

ABSTRACT

Transformation of biomass and plastic waste by co-pyrolysis is a potential way to create high-grade bio-oil. This study investigated the co-pyrolysis of orange peel (OP) with waste polystyrene (PS) for the production of bio-oil. The effect of temperature and blending ratio on the yield and chemical composition of bio-oil was investigated. The reaction temperature and orange peel to polystyrene ratio were varied from 300°C to 700°C and from 0:100 to 100:0, respectively. 400 °C and OP to PS ratio of 25:75 were selected as the optimal temperature and blending ratio for the co-pyrolysis of OP and PS. Bio-oil produced at this reaction condition was rich in high-value organic chemicals, such as hydrocarbon and aromatic. A maximum bio-oil yield of 55.73 wt.% was achieved at OP to PS ratio of 25:75. Increasing the PS ratio enhanced the H/C ratio in the mixture. Thus, more hydrogen is transferred to OP to react with OP-derived radical. Adding 75% of OP to PS significantly reduces the PAH from 59.95 wt.% to 1.7 wt.%. Inhibition of PAH at OP: PS ratio of 75:25 could be due to the synergistic interaction between OP and PS pyrolyzes. Moreover, the oxygen content significantly reduced from 53.03wt.% to 12.01 wt.%, and this composition gave rise to a greater HHV of 40.01 MJ/Kg, close to that of commercial liquid fuels, such as diesel (42 MJ/Kg). This finding indicates that the co-pyrolysis used in this work can lead to production of valuable aromatic chemicals. Using these wastes to produce pyrolysis oil could reduce the landfill needed, decrease waste treatment costs, and solve environmental problems.