ECONOMIC DISPATCH WITH ENVIRONMENTAL CONSIDERATION USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

This thesis is presented in partial fulfilment for the award of the

Bachelor of Engineering (Hons.) Electrical

UNIVERSITI TEKNOLOGI MARA

MOHAMMAD AZLEE BIN MADON FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UITM) SHAH ALAM MAY 2011

ACKNOWLEDGEMENT

First of all, praise to Allah, for His permission and blessing for making this project successfully complete

I would like to express my special gratitude and thanks to my supervisors, Assoc. Prof. Bibi Norasiqin Sheikh Rahimullah for all her valuable guidance, advices, suggestions and support throughout this project. She always gives the idea and encouragement in helping me to carry out the project in a better way. Her knowledge is very useful for me to do the research appropriately.

I would also like to give my appreciation to all people who helped in completion this project. My deepest thanks and appreciation to my family for their moral support and encouragement.

Lastly, I like to dedicate a special thanks to my classmates, roommates and fellow friends who helped me directly or indirectly in completing this project. Their continuing support and involvement really help a lot in my endeavors.

ABSTRACT

This project presents the Particle Swarm Optimization (PSO) solution for the Economic Dispatch (ED) in power system by considering the environmental issues. The Economic Dispatch problem is to minimize the total cost of generation under various systems and operational constraints while satisfying the power demand. However, the power system operation at minimum cost is not longer the only criterion for electrical power dispatch. There are others issues that are also being concerned nowadays.⁷ Environmental concerns are becoming increasingly relevant for companies as regulations on pollutants become more stringent and customer awareness of environmental impacts increases. Therefore, a new decision approach is proposed for the incorporation of the carbon dioxide emission constraints in the solution of the Economic Dispatch problem. ⁹ Particle Swarm Optimization algorithm is used for generating the fuel cost versus emission tradeoff function for carbon dioxide emission. Particle Swarm Optimization approach has been successfully tested on the IEEE 26 and 30 bus system with six generator units, which dealing with the cost–emission economic dispatch problem. Particle Swarm Optimization algorithm is proposed to solve this problem developed using MATLAB program.

TABLE OF CONTENT

CONTENTS			PAGES		
DEC	LARATION		i		
АСК	NOWLEDGEMENT	ï			
	TRACT		iii		
			iv		
TAB	ABLE OF CONTENT				
LIST	OF FIGURES	vi			
LIST	vii				
CHA	PTER 1: INTRODUCTIO	DN	1		
1.1	Overview		1		
1.2	Problem Statement		2		
1.3	Objectives		4		
1.4	Scope of Work		4		
1.5	Thesis Organization		5		
CHA	PTER 2: LITERATURE	REVIEW	6		
2.1	Introduction	6			
2.2	Solving Techniques in	6			
2.3	Economic Dispatch & I	olving Techniques in Economic Dispatch Problem6conomic Dispatch & Environment Issues8			
2.4	Economic Dispatch Bas	10			
2.5	Economic Dispatch Constraints		12		
	2.5.1 Inequality or Ge	eneration Limits Constraint	12		
	2.5.2 Power Balance	Constraint	13		
	2.5.3 Total Power Lo	sses	13		

2.6	Gas Emission Constraints		14
	2.6.1	Control Limit of Emission Constraint	14
	2.6.2	Expected Total CO ₂ Emission	14
	2.6.3	Emission Conversion Factor	15
2.7	Particl	e Swarm Optimization Method	15
СНАР	TER 3:	METHODOLOGY	17
3.1	Introduction		17
3.2	Particle Swarm Optimization (PSO)		17
	3.2.1	Particle Swarm Optimization Pseudo Code	20
	3.2.2	PSO Initialization Process	22
	3.2.3	PSO Optimization Process	22
	3.2.4	Implementation of PSO Algorithm in ED with	24
		Controlled-Emission Problem	
3.3	Experimental Design		26
3.4	MATLAB Application		29
	3.4.1	Overview of the MATLAB Environment	29
	3.4.2	The MATLAB System	30
CHAP	TER 4:	RESULTS AND DISCUSSION	38
4.1	Introduction		38
4.2	PSO Parameter Setting		38
4.3	Emission Conversion Factor		39
4.4	Results for 26-Bus System		40
4.5	Results for 30-Bus System		44
СНАР	TER 5:	CONCLUSION & FUTURE DEVELOPMENT	48
5.1	Conclusion		48
5.2	Future Development		48
CHAP	TER 6:	REFERENCES	49