CHAOTIC ANT SWARM OPTIMIZATION FOR ECONOMIC DISPATCH CONSIDERING TRANSMISSION LOSSES

Thesis is presented in partial fulfilment for the award of the Bachelor of Engineering (Hons) Electrical

> FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

AMELIA BT ABD RAZAK

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA (UiTM)

SHAH ALAM

JULY 2012

ACKNOWLEDGEMENTS

With the name of **ALMIGHTY ALLAH**, who gave me the strength and courage to fulfill the mandatory requirements of this thesis.

First and foremost, I would like to express my heartily gratitude to my supervisor, Assoc. Prof. Bibi Norasiqin binti Rahimullah for the guidance and support given throughout the progress of this project. I am indebted to her for having helped me shape the problem and providing insights towards the solution.

My appreciation also goes to my family who have been tolerant and supportive all these years to what I have been done. I am grateful for their encouragement, love and emotional support throughout my study in University Teknologi MARA (UiTM).

I would also like to thank the Technical Paper Presentation Panel especially to Ir. Harizan Che Mat Aris for the evaluation of my technical paper presentation of this project.

Netherless, my great appreciation dedicated to all my friends in Electrical Power Courses especially Mohd Azril Ab Raop who was shared many knowledge about my final year project. There no words such meaningful than thank you so much.

ABSTRACT

The economic dispatch (ED) problem is one of the most important operational functions of the modern day energy management system. The purpose of the ED is to find the optimum generation among the existing units, such that the total generation cost is minimized while simultaneously satisfying the power balance equations and various other constraints in the system. This paper presents chaotic ant swarm optimization (CASO) for solving ED with the transmission losses problems in order to minimize the total generation cost while satisfying all generation constraint. This algorithm combines with the chaotic and self-organization behaviour ants in the foraging process. The proposed method is tested on six generation unit systems and the results show that it is able to solve ED problem. CASO algorithm used in this study was implemented by using MATLAB 7.5.0 (R2007b). Results demonstrate that the method can obtain feasible and effective solution.

TABLE OF CONTENT

<u>CONTENTS</u>	PAGES	
DECLARATION	i	
ACKNOWLEDGEMENTS	ii	
ABSTRACT		
TABLE OF CONTENT		
LIST OF FIGURES		
LIST OF TABLES		
CHAPTER 1: INTRODUCTION		
1.1: Background	1	
1.2: Problem Statement	2	
1.3: Objetives	3	
1.4: Scope of Work	4	
1.5: Thesis Organization	5	
CHAPTER 2: LITERATURE REVIEW	6	
2.1: Introduction	6	
2.2: The Economic Operation of Power System	7	
2.3: Economic Dispatch on Thermal Unit	8	
2.3.1: Economic Dispatch Considering Without		

	٢	Network Losses.	9
	2.3.2	Economic Dispatch Considering With Network	
	L	Losses Considered	10
2.4:	The Ob	ejective Function of Economic Dispatch	13
2.5:	Solving	g Techniques in ED Problem	15
2.6:	Chaotic	e Ant Swarm Optimization (CASO)	16
	2.6.1:	Behaviour of Real Ants	16
	2.6.2:	Integer Programming via Chaotic Ant Swarm	18
CHAPTER 3:	METH	ODOLOGY	21
3.1:	Introdu	ction	21
3.2:	Chaotic	e Ant Swarm Optimization (CASO)	21
	3.2.1:	Representation of Individual String	22
	3.2.2:	Evaluation Function	22
3.3:	CASO	Process for Solving Economic Dispatch Problem	24
3.4:	Experin	nent Design	26
3.5:	MATL	AB Application	28
	3.5.1:	MATLAB Overview	28
	3.5.2:	The MATLAB System	30
	3.5.3:	MATLAB Programming	31
	3.5.4:	Application of MATLAB Function	33