ECONOMIC POWER DISPATCH SOLUTION WITH NON-SMOOTH COST FUNCTIONS USING DIFFERENTIAL EVOLUTION

Thesis is presented in partial fulfillment for the award of the

Bachelor of Engineering (Hons) Electrical UNIVERSITI TEKNOLOGI MARA

MUHAMMAD FIRDAUS BIN ABD RAHIM FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UiTM) SHAH ALAM MAY 2011

ACKNOWLEDGEMENTS

In the name of ALLAH S.W.T., the most Merciful and the most Gracious.

Alhamdulillah, a lot of thanks to ALLAH S.W.T for His blessing for me to complete my Final Year Project (FYP) and I would like to express my sincere thanks to my supervisor, Assoc. Prof Bibi Norasiqin Sheikh Rahimullah for the consistent encouragement, valuable guidance and constructive suggestions throughout this thesis work. I also wish to express my sincere thanks to all who provided me with valuable suggestions, comments and support throughout my thesis work.

ABSTRACT

This thesis proposes a solution for Economic Dispatch problems with non-smooth cost functions using Differential Evolution (DE) algorithm. This technique is to minimize system cost by properly allocating the real power demand amongst the online generating units considering the valve point loadings. A 3-unit generator system is used to test the proposed method. The results obtained show that DE can solve Economic Dispatch with non-smooth cost function successfully. The program for this algorithm has been developed in Matlab 7.6 platform.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSi			
ABSTRACTii			
TABLE OF CONTENTSiii			
LIST OF FIGURESvi			
LIST OF TABLEvi			
LIST OF SYMBOLS AND ABBREVIATIONSvii			
CHAPTER 1			
INTRODUCTION			
1.1. BACKGROUND OF STUDY			
1.2. PROBLEM STATEMENT			
1.3. OBJECTIVE			
1.4. SCOPE OF WORK			
1.5. THESIS ORGANIZATION			
CHAPTER 2			
LITERATURE REVIEW			
2.1 ECONOMIC DISPATCH			
2.2 THERMAL			
2.3 TRADITIONAL OPTIMIZATION TECHNIQUES			
2.3.1 Dynamic Programming (DP)9			
2.3.2 Genetic Algorithm (GA)9			
2.5.1 Particle Swarm Optimization (PSO)10			
2.3.4 Simulated Annealing (SA)11			

2	2.3.5	Tabu Search (TS)	11	
2.4	DI	FFERENTIAL EVOLUTION (DE)	12	
2.5	TH	E OPTIMIZATION IN DIFFERENTIAL EVOLUTION (DE)	13	
2	2.5.1	Initialization	13	
2	2.5.2	Mutation	13	
2.5.3		Crossover	13	
2	2.5.4	Selection	14	
2.6	M	JLTIPLE FUEL TYPES	15	
2.7	TH	E PROHIBITED OPERATION ZONES	16	
2.8	TH	E VALVE POINT LOADING EFFECT	17	
CHAPTER 3				
PROBLEM FORMULATION				
3.1	OBJI	ECTIVE FUNCTIONS		
3.1.1 Conventional Quadratic Cost Function			18	
3.1.2 Non-smooth Cost Functions with Valve-Point Effects			19	
3.2 EQUALITY CONSTRAINT				
3.3	INEC	UALITY CONSTRAINT	22	
3.3.1 N		Minimum and Maximum Power Limits	22	
3.3	.2 0	Generator Prohibited Operating Zones	23	
СНА	PTER	4	24	
MET	THOD	DLOGY	24	
4.1	PRO	BLEM STATEMENT	24	
4.2	RESEARCH DESIGN			
4.3	3 APPLICATION OF MATLAB FUNCTION			