SOLVING UNIT COMMITMENT USING LAGRANGIAN RELAXATION METHODS

Thesis is presented in partial fulfilment for award of Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA

KHAIROL BASHA B MD TAHIR Faculty of Electrical engineering Univerisiti Teknologi MARA Malaysia 40450 Shah Alam, Selangor. May 2010

ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent and the Most Merciful. All praises being to Allah, Load of the Universe, with also bless and regard to Nabi Muhammad S.A.W. His companion and the people who follow His path.

I first wish to express my sincere appreciation and gratitude to my project supervisor, Associate Professor Bibi Norasiqin Bt Sheikh Rahimullah, for her invaluable ideas, support, critics and encouragement guidance since the first beginning of this project. She has far exceeded the expectations of a great supervision and provided means for the establishment of the grounds of a good friendship.

At last, but not least, I am extremely grateful to my beloved family members. Without their unlimited dedication, support and love throughout so many years, I would never have got this far. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

ABSTRACT

Unit commitment (UC) is one of the important analyses required in the scheduling and dispatch of power system .The unit commitment problem consists of determining the schedules of the power generating units and the generating level of each unit. The decisions concern to which units to commit during each time period and at what level to generate power to meet the electricity demand. This problem is difficult to solve, since it covers a multi period time range coping with on/off states of power plants. In literature, several methods have been developed to deal with UC. This report presents the application of a Lagrangian Relaxation method for solving the unit commitment problem. One of the most obvious advantages of the Lagrangian relaxation method is its quantitative measure of the solution quality since the cost of the dual function is a lower bound on the cost of the primal problem. The proposed method has been tested on a 3 generation unit system using Matlab programming and the result give the minimization of generating cost and at the same time optimize the operation of the system base on the load demand for the given day.

CONTENTS

CHAPTER	DESCRIPTION	PAGE			
	DECLARATION	i			
	ACKNOWLEDGEMENT	ii			
	ABSTRACT	iii			
	TABLE OF CONTENTS	iv			
	LIST OF FIGURES	vii			
	LIST OF TABLES	viii			
	LIST OF ABBREVIATIONS	ix			
1	INTRODUCTION				
	1.1 INTRODUCTION	1			
	1.2 PROBLEM STATEMENT	4			
	1.3 PROJECT OBJECTIVE	5			
	1.4 SCOPE OF WORK	5			
	1.5 THESIS ORGANIZATION	6			
2	UNIT COMMITMENT				
	2.1 INTRODUCTION	7			
	2.2 FACTOR TO CONSIDER IN SOLVING UC	8			
	PROBLEM				
	2.2.1 The Objective of Unit Commitment	8			
	2.2.2 The Quantity to Supply	8			
	2.2.3 Compensating the Electricity Supplier	8			

CHAPTER		DESCRIPTION	PAGE
		2.2.4 The Source of Electricity Energy	9
	2.3	BACKGROUND ON THE UNIT COMMITMENT	10
		ANALAYSIS	
		2.3.1 Heuristic Method	11
		2.3.2 Dynamic Programming	12
		2.3.3 Lagrangian Relaxation	13
		2.3.4 Branch and Bound Method	16
		2.3.5 Mixed Integer Programming	16
		2.3.6 Benders Decomposition Method	18
	2.4	LAGRANGIAN RELAXATION AS A PROPOSE PROPOSE TECHNIQUE	18

3 ELEMENTS IN THE MODELLING OF UNIT COMMITMENT PROBLEM

3.1	INTRODUCTION	20
3.2	UNIT AND PLANT CONSTRAINT	21
	3.2.1 Generating Unit	21
	3.2.3 Minimum-Up time	21
	3.2.3 Minimum-Down time	22
	3.2.4 Must-Run units	22
	3.2.5 Must-Out units	23
	3.2.6 Spinning Reserve	23
3.3	SYSTEM LOAD DEMAND	24
3.4	OPERATING COST FUNCTION	25
	3.4.1 Fuel Cost	25
	3.4.2 Start-Up cost	28