CHAOTIC ANT SWARM OPTIMIZATION TO ECONOMIC

DISPATCH

Thesis is presented in partial fulfillment for the award of the

Bachelor of Electrical Engineering (Hons)

UNIVERSITI TEKNOLOGI MARA

MOHD SYAFIQ BIN MD SALLEH FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UiTM) SHAH ALAM MAY 2010

ACKNOWLEDGEMENTS

First of all, grateful to Allah S.W.T for His approval and blessing that made all this happened and came true. Nothing can be done without His permission. Alhamdulillah.

A special and most honoured gratitude to my supervisor Assoc. Prof. Bibi Norasiqin Sheikh Rahimullah for her guidance, teachings and support throughout this project. I am truly honoured and humble to have her as my supervisor because her knowledge and expertise is very vast and wide. I am beyond doubt enjoyed the challenge of discussing and debating various aspects and topics regarding my project with her which later helped me improve my final project and knowledge about it.

I would also like to thank Dr. Muhammad Murtadha Othman and Cik Nor Farahaida Abdul Rahman for the evaluation of my technical paper presentation and technical paper for this project.

Special thanks to my acquaintances for helping me with their precious suggestions and supports throughout the completion of this project. Your kindness will be embedded in my heart forever.

ABSTRACT

Economic Dispatch (ED) solution for a power system gives the optimal combination of power output for all the generating cost in order to minimize total fuel cost while satisfying the load demand and operational constraint. Based on the chaotic system theory, this paper presents a Chaotic Ant Swarm Optimization (CASO) to solve ED problems. To evaluate the proposed method, a three unit generating power system was tested in order to obtain the minimum cost of generator. Chaotic Ant Swarm optimization (CASO) algorithm used in this study was implemented by using MATLAB 7.5.0 (R2007b). Results demonstrate that the method can obtain feasible and effective solution.

Keywords-component: Chaotic ant swarm optimization; Economic dispatch; Ant colony optimization; Swarm intelligence

TABLE OF CONTENT

<u>CONTENTS</u>			
DECLARATION			
ACKNOWLEDGEMENTS			
ABSTRACT			
TABLE OF CONTENT			
LIST OF FIGURES			
LIST OF TABLES			
CHAPTER 1: INTRODUCTION 1.1 Overview			
 Problem Statement Objectives 	2 3		
1.4 Scope of Work	3		
1.5 Thesis Organization	4		
CHAPTER 2: LITERATURE REVIEW	6		
2.1 Introduction	6		
2.2 Economic Dispatch	7		
2.3 Economic Dispatch Constraints	11		
2.3.1 Inequality or Generation Limits Constraint	11		
2.3.2 Power Balance Constraint	11		
2.3.3 Total Power Losses, P _L	12		
2.4 Solving Techniques in Economic Dispatch Problem	13		
2.5 Chaotic Ant Swarm Optimization Method	14		

CHAPTER 3: METHODOLOGY

	3.1	Introduction			
	3.2	Chaotic Ant Swarm Optimization Algorithm			
		3.2.1	CASO Search Space in Organization Variable	18	
		3.2.2	Determining the Neighbour Selection	20	
		3.2.3	CASO for Solution Coding and Evaluation Function	22	
		3.2.4	CASO Optimization Process	24	
	3.3	Exper	iment Design	26	
	3.4	MATI	LAB Application	29	
		3.4.1	MATLAB Overview	29	
		3.4.2	Overview of the MATLAB Environment	30	
		3.4.3	The MATLAB System	31	
		3.4.4	Application of MATLAB Function	32	
CHAPTER 4: RESULTS AND DISCUSSION		38			
	4.1 Introduction			38	
	4.2	Parameter setting for CASO			
4.3 Example System for unit Generator Parameter			39		
	4.4	Results			
	4.5	Discu	ssion	44	
CHAPTER 5: CONCLUSION				46	
FUTURE	DE	VELOI	PMENT	47	

17

48

CHAPTER 6: REFERENCES