ECONOMIC DISPATCH SOLUTION USING BACTERIA FORAGING OPTIMIZATION

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons.) Electrical Universiti Teknologi MARA (UiTM)

MOHD SALEHUDIN BIN SAMSUDIN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

Alhamdulillah, Thanks to Allah for the strength and blessing me throughout the entire research and completion of this thesis. Peace upon our prophet Muhammad S.A.W. who has given light to mankind.

There are numerous people I must thank that have helped me through the course of my graduate studies. I would like to express my sincere thanks to Assoc. Prof. Bibi Norasiqin Sheikh Rahimullah , my supervisor. Her motivation and encouragement kept me going throughout this thesis. Her patience and support have been invaluable towards the completion of this work. Without her constant support, this project would never have come to fruition.

Finally, I would like to thanks my parents, Samsudin bin Salih and Satifah binti Abdul Rahim for their constant support both emotionally and financially in completing this project. I sincerely appreciate their patience and understanding while waiting for me to complete my degree. Without their overwhelming positive influence on my life, I would not been able to achieve my goal.

ABSTRACT

Economic dispatch problem is an optimization problem where objective function is highly non-linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization method may not converge or get trapped to any local minima. This paper presents a Bacteria Foraging Optimization (BFO) for economic dispatch problem in power system. BFO has been proposed to solve this complex problem and tested on the three unit generation system. The results obtained show that the method is able to provide the solution for economic dispatch problem.

TABLE OF CONTENTS

CONTEN	ITS	PAGE
ACKNOW	LEDGEMENT	i
ABSTRAC	Т	ii
TABLE OF	CONTENTS	iii
LIST OF F	IGURES	vi
LIST OF T	ABLES	vii
LIST OF S	YMBOLS AND ABBREVIATIONS	viii
CHAPTER	1: INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PROBLEM STATEMENT	3
1.3	OBJECTIVES	3
1.4	SCOPE OF STUDY	4
1.5	ORGANIZATION OF THE THESIS	4
CHAPTER	2: LITERATURE REVIEW	5
2.1	INTRODUCTION	5
2.2	REVIEW	5

2.3	ECONOMIC DISPATCH	11
	2.3.1 INTRODUCTION	11
	2.3.2 ECONOMIC DISPATCH IN POWER SYSTEM	12
	2.3.3 OPERATING COST OF A THERMAL PLANT	13
	2.3.4 ECONOMIC DISPATCH WITH NEGLECTING TRANSMISSION LOSSES	16
	2.3.5 ECONOMIC DISPATCH CONSIDERING TRANSMISSION LOSSES	18
2.4	CONSTRAINTS	20
	2.4.1 EQUALITY CONSTRAINT	20
	2.4.2 INEQUALITY CONSTRAINT	21
	2.4.3 EFFECT OF INEQUALITY CONSTRAINTS	22
CHAPTER	3: METHODOLOGY	23
3.1	INTRODUCTION	23
3.2	BACTERIA	23
3.3	BACTERIA FORAGING OPTIMIZATION	25
	3.3.1 CHEMOTAXIS	26
	3.3.2 SWARMING	27
	3.3.3 REPRODUCTION	28
	3.3.4 ELIMINATION AND DISPERSAL	28
3.4	BACTERIA FORAGING OPTIMIZATION ALGORITHM	29