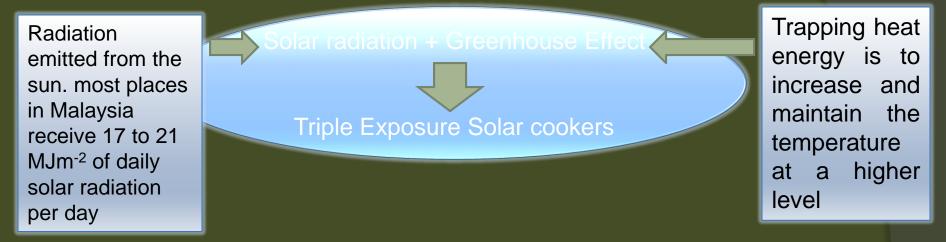


THE SIMULATION OF TRIPLE EXPOSURE SOLAR COOKERS

MOHD FADHLI BIN MAT ZAIN (2006690240)


SUPERVISOR: MDM FAUZIAH BINTI JERAI @ JUNAIDI

CO. SUPERVISOR: MR. ZAINOOR HAILMEE BIN SOLIHIN

INTRODUCTION

- Solar energy is the technology obtaining usable energy from the light of sun.
- Solar energy can be converted into other forms of energy, such as heat and electricity.
- NASA Solar Energy Panel identified three broad applications to be used from solar energy
 - the heating and cooling
 - the chemical and biological conversion of organic materials to liquid, solid and gaseous fuels
 - the generation of electricity

OVERVIEW OF PROJECT

- Modelling of one rectangular shape as a solar oven
- 3 surface will exposed to the solar radiation directly
- CFD simulation of solar cookers based on climate of Shah Alam, Selangor.

PROBLEM STATEMENT

- It is to the main problem on solar oven is to reach the temperature of solar oven that suitable for cooking.
- Solar oven experiments by using triple exposure is still no validation of the performance.
- Location of solar oven is one of the important factors to be considered

OBJECTIVE

- To determine the temperature distribution for triple exposure on solar oven
- To determine suitability of Malaysia climate for solar thermal
- To obtain the simulation result on triple exposure solar oven by CFD software.

SCOPE

- To determine the highest temperature can be gain by solar oven
- To determine the duration of time for highest temperature gain
- The thermal performance testing was conducted at Shah Alam, Selangor, Malaysia which is located at Universiti Teknologi Mara Malaysia.
- The temperature is determined by dependants on time.

SIGNIFICANT OF PROJECT

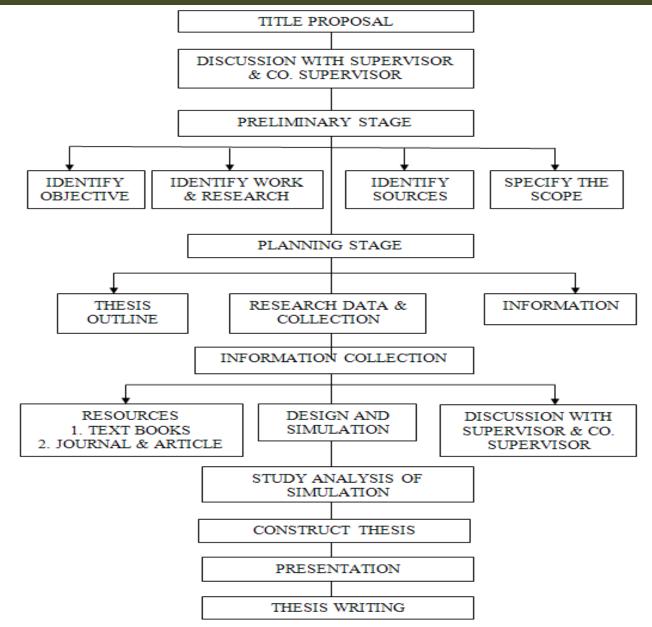
- it can reduce dependants on wood and charcoal for cooking fuel
- one of the opportunities to developed one of the cookers that safe, lower cost and convenience for all people.
- the performance of solar oven of triple exposure in Malaysia climate will be known as well

RECENT STUDIES

DESCRIPTIONS

M. B. Habeebullah, A. M. Khalifa, and I. Olwi

AUTHOR

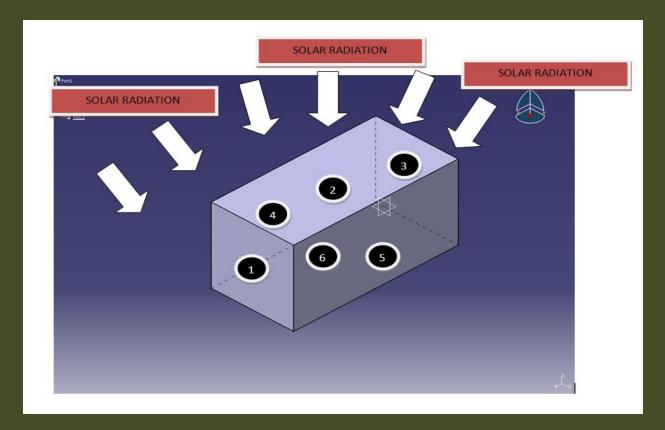

- The analysis of the present work is based on an insulated pot with a glazed insulation window in an oven.
- To minimizing heat losses, better heat transfer would be ensured by heating the pot from the bottom and sides similar conventional cookers
- Wind is a major factor in determining the cooker performance
- Introduce a double exposure of solar oven
- The absorber is exposed to solar radiation from the top and bottom sides

Emad H. Amer

- The double exposure cooker reduces the cooking time generally about 30-60 min
- The temperature of the absorber plate and oven air can reach as high as 165°C and 155°C

Herliyani Suharta, K. Abdullah and A. Sayigh	 The development of solar oven has been divided to fourth generation Introduce to the people to some places in Indonesia as a respondent The highest temperature for fourth generation ovens reached without load was 175°C
Jose´ M. Arenas	 The solar kitchen that was developed has reaches an average power scale of 175 W, with an energy efficiency of 26.6% the design have reduced the weight of the solar kitchen to less than 5 kg and the assembly and disassembly times to 2 and 1 min, respectively

METHODOLOGY


GANTT CHART

Activity/Month	7/09	8/09	9/09	10/09	11/09	12/09	1/10	2/10	3/10	4/10	5/10	6/10
Find Project and Title												
Study and Literature Review												
Proposal												
Methodology												
Learning CFD software												
(CD-adapco)												
Presentation FYP 1												
3-D Modeling												
CFD Simulation												
Result Analysis												
Thesis Writing												

PRELIMINARY SIMULATION

- Model solar oven will be design by CD-adapco software.
- Model will meshing based on the size of model
- Simulation will run by using CD-adapco software.
- Some input need to be define such as
 - Temperature outside based on the location
 - Total heat energy outside as a heat source
 - Variable of time (1 hour for each time taken)
 - All general parameter and constant relate to solar radiation and heat transfer

Source data: http://www.pvmc.uitm.edu.my/pvmc2009/aboutems.asp

- Surface 1,2,and 3 are expose to the solar radiation
- Surface 4,5 and 6 are close and assume as an insulator
- Define the surface 1,2 and 3 as an inlet of the model to absorb the heat energy from outside

THANK YOU.....