UNIVERSITI TEKNOLOGI MARA

SOLAR QUIET (*SQ*) CURRENT PROFILES OF THE NORTHERN HEMISPHERE OF ASIA REGION DURING SOLAR CYCLE 24 USING SPHERICAL HARMONIC ANALYSIS

SITI NURBAITI BINTI IBRAHIM

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Electrical Engineering)

Faculty of Electrical Engineering

December 2021

ABSTRACT

A geomagnetic field recorded in the ground-based magnetometer is a summation of various signal sources. The geomagnetic variation field comprises contributions from external currents in the Earth's ionosphere and magnetosphere and internal currents. Internal currents originate from Earth's dynamo core, rock magnetization field in the crust, and induced currents generated by the external field. There has been a lack of research in monitoring the Sq focus vortex of external and internal currents involving the ocean impact, which also relies on regional conductivity due to inadequate information on interior sources. The main objective of this study is to establish the current profile of the external and internal Sq current in different phases of solar cycle 24 (SC24) in the Northern Asian Region. The separation current of external and internal fields was determined using spherical harmonic analysis (SHA). The analysis was divided into three different regions containing data from a combination of inland stations and oceanic/island stations, mostly inland stations, and merely oceanic/island stations. This is specifically to investigate the induced effect on internal current purposely. The behavior of this current was characterized by monthly, seasonally, and yearly variations. The results revealed that the monthly variation of external and internal current vortex systems is maximum during the pre-noon time near foci current. It was found that external and internal field components contribute to Sq current system structures. In the quiet year of 2009, the highest peak current and well-formed current vortex mostly occurred during the summer solstice in all selected regions. However, during peak (2014) and descending (2016) years, the maximum amplitude changes and varies into spring equinox seasons depending on the regional conditions. The strongest current intensity for external and internal fields was detected during the peak year of SC24. The secular variation of external current results exhibited maximum amplitude at mostly inland stations during peak and descending years. Conversely, with internal current results, the highest current intensity was demonstrated at stations with majorly oceanic and island stations during the peak year of SC24. The results could be attributed to the ionospheric conductivity and the electric field at the external field, and the conductive body on the Earth surface that can induce internal currents. This study contributes to geomagnetic field research by providing a quiet baseline for space weather monitoring and influential information parameters from both separate fields.

ACKNOWLEDGEMENT

In the name of Allah. The Most Beneficent and The Most Merciful

Alhamdulillah, first and foremost, all praise to ALLAH SWT. Thankful to the ALMIGHTY, "Ya Alim," "Ya Hakim," "Ya Barri," and "Ya Hadi" for HIS blessing and guidance in successfully completing this challenging journey of my PhD research.

My gratitude and deepest appreciation, Prof. Ir. Ts. Dr. Ahmad Asari Bin Sulaiman; for his patience, assistance, constructive comments, and encouragement throughout the study. I also like to wish to express my sincere appreciation to my co-supervisor, Prof. Ir. Ts. Dr. Mohamad Huzaimy Jusoh for his continuous guidance, enthusiasm, motivation, and support to complete this research. My heartfelt indebtedness and appreciation to the UiTM lecturers and staff, Ir. Dr. Nur Emileen Abd Rashid, Dr. Khairul Khaizi B. Mohd Shariff, Assoc. Prof. Ts. Dr. Mohamad Fahmi Bin Hussin @Mohamad, Ts. Dr. Fazlina Bt Ahmat Ruslan and others always gave me motivation, inspiration, advice, and facilities throughout this entire research journey. Without the persistent supports and interest in all of them, this thesis would not have been possible.

Special regards to my colleagues, the Applied Electromagnetic Research Group (AERG) team, and my beloved friends for their endless support. Not to forget, thanks to Dr. Mustapha Abbas for always encouraging me, assisting me, and sharing his expertise in electromagnetism. My gratitude also to MyPhD (MyBrain15) under Kementerian Pendidikan Tinggi Malaysia for their funding.

Last but not least, I wish to acknowledge the extraordinary support and great love of; my beloved husband, Mohd Mu'izzuddin' Afifi bin Matsor, my good and 'solehah' daughters; Nuha Ammara and Hani Kayyisa, my parents; Ibrahim Sulaiman and Zaiton Ibrahim, my parents in law; Matsor Ismail and Saedah Mohamad and all family members. They kept me going, and this thesis would not have been realized without their invaluable prayers, blessing, motivation, and support.

May Allah SWT bless all of them with endless happiness and ease their difficulties and hardships. May this thesis give some contributions in the electromagnetic field knowledge.

TABLE OF CONTENT

CONF	ii	
AUTH	iii	
ABST	iv	
ACKN	v vi x xi	
TABL		
LIST		
LIST		
LIST	xvi	
LIST	OF ABBREVIATIONS	xix
CHAP	PTER ONE INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objective	5
1.4	Scope and Limitation of Work	6
1.5	Significance of Study	7
1.6	Organization of Thesis	8
CHAP	PTER TWO LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Solar-Terrestrial Mechanism	9
	2.2.1 Sun Activity and the Solar Cycle	9
	2.2.2 Solar Wind Interactions	12
	2.2.3 Indices of Geomagnetic Activity	14
2.3	Earth's Magnetic Field	15
	2.3.1 Earth's Magnetic Field Components	15
	2.3.2 Sources of Magnetic Fields	17
	2.3.2.1 The Internal Field	18
	2.3.2.2 The External Field	20

	2.3.3	Types of Geomagnetic Field Variations	21		
		2.3.3.1 Long Term (Secular) Variations	22		
		2.3.3.2 Short Term (Transient) Variations	22		
2.4	The Ionospheric Dynamo Actions Currents				
	2.4.1	Ionospheric Dynamo Actions Process	24		
	2.4.2	Ionospheric Conductivity and Current System	27		
	2.4.3	Sq Current	30		
		2.4.3.1 Features of middle and low latitude Sq c	current system		
			30		
		2.4.3.2 Possible correlated effects on the Sq mag	netic fields 31		
		2.4.3.3 Estimation of Sq fields	33		
2.5	Spher	ical Harmonic Analysis	35		
	2.5.1	Cloning Sphere (Slicing) method	35		
	2.5.2	Fourier Series	37		
	2.5.3	Application of SHA modeling	38		
	2.5.4	Separations of External and Internal Currents	43		
2.6	Revie	ew on <i>Sq</i> Current Analysis 4			
2.7	Summ	nary	60		
СНА	PTER	THREE RESEARCH METHODOLOGY	61		
3.1	Introd	luction 6			
3.2	Mater	ial	61		
	3.2.1	Data Collections	61		
		3.2.1.1 Geomagnetic Field Data Array	61		
		3.2.1.2 Geomagnetic Field Data Observatories	67		
		3.2.1.3 Geomagnetic Indices Data	70		
		3.2.1.4 Software	72		
3.3	Metho	od	72		
	3.3.1	Research Methodology Workflow	72		
	3.3.2	Data Selection	74		
	3.3.3	Data Extraction	75		
	3.3.4	Spherical Harmonic Analysis	76		
		3.3.4.1 Determination of Hourly Values	76		
		3.3.4.2 Cloning data	77		