UNIVERSITI TEKNOLOGI MARA

IN VITRO FREE RADICAL FORMATION FOLLOWING EXPOSURE TO TECHNETIUM-99M (99mTc)

AHMAD AKMAL BIN HAJI MOHAMAD BEE

Dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Pharmacy (Hons)

FACULTY OF PHARMACY

January 2012

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah because Allah SWT permission this research can be completely done in the given time. This research reflects the talent and hard work and also contribution of many people. Here I want to express my thanks to all people who have involved in completing this research.

I wish to express my gratitude to my supervisor of this research, Mr. Muhamad Faiz Othman for his valuable guidance and advice. He inspired me to work on this project. His willingness to motivate me contributed to my project. In addition, thanks to research assistant, Mrs. Maisarah Mohd Zin due to her hardwork and consistency in helping me during this study. This appreciation also goes to Dr. Shafie Khamis who give permission to use the laboratory and facilities at the Malaysia Institute Nuclear Technology (MINT) and Madam Zatul, pharmacist from Hospital Besar Kuala Lumpur (HKL) who willing to provide the ^{99m}Tc.

Last but not least, an honourable mention goes to my family and friends for their understandings and supporting me in completing this research. Without helps of the particulars that mentioned above, I would face difficulties while running this research.

TABLE OF CONTENTS

	Page
TITLE PAGE	
APPROVAL	
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVATIONS	viii
ABSTRACT	ix
CHAPTER ONE (INTRODUCTION)	
1.1 Introduction	1
1.2 Problem statement	2
1.3 Objective of study	3
1.4 Significance of study	3
1.5 Hypothesis	3

CHAPTER TWO (LITERATURE REVIEW)

2.1 History of ^{99m} Tc	4
2.2 Sources of ^{99m} Tc	5
2.3 Application of ^{99m} Tc	6
2.4 Production of an auger electron	7
2.5 Mechanism of hydroxyl radical cause DNA damage	10
CHAPTER THREE (METHOD)	
3.1 Determination of radionuclide purity	11
3.2 Preparation of ^{99m} Tc-HMPAO	12
3.3 Determination of radiochemical purity	12
3.4 Labelling MCF-7 cell with ^{99m} Tc-HMPAO	14
3.4.1 DNA damage versus concentration	14
3.4.2 DNA damage versus time	15
3.5 Measuring uptake of ^{99m} Tc-HMPAO into MCF-7 cell	16
3.6 Thiobarbituric acid reactive substances (TBARS)	16
3.7 Summary of methods	17
CHAPTER FOUR (RESULTS)	
4.1 Determination of radionuclide purity	18

ABSTRACT

This study is about the formation of free radical following exposure to technetium-99m (^{99m}Tc). The objectives are to assess the presence of free radical following administration of ^{99m}Tc-HMPAO and also to assess the optimum time and activity to induce the free radical formation. This ^{99m}Tc will irradiate and produce the free radical known as auger electrons.

The method that used in this study is as follow. The ^{99m}Tc is produced by the ^{99m}Tc generator. Then it must undergo the radionuclide purity test to measure the purity of ^{99m}Tc by the generator. After that, the ^{99m}Tc is form a complex with the Hexamethylpropyleneamine oxime (HMPAO). The amount of complex that formed was measured to get the purity standard. Then, the complex will be labelled into the cell and the percentage uptake of complex by cell will be recorded. The last stage of this experiment is the thiobarbituric acid reactive substance. This test is done to detect the presence of free radical that form in the cell by using the malondialdehyde (MDA) standard curve.

As the conclusion, as the concentration of MDA is low, the production of free radical is also low. Thus, the cell that will be killed by the free radical is less. For further study, the time exposure and the concentration of ^{99m}Tc solution must be widened to get more efficient result.