

CAD/CAE OPPORTUNITY IN PRODUCT MODELLING OF COMPLICATED SHAPE (INTAKE MANIFOLD)

MOKHTAR BIN HASIM (98424971)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Mara (UiTM)

JULY 2002

ACKNOWLEDGEMENT

In the name of ALLAH, The Most Beneficent and Merciful. Thanks to Allah S.W.T for His blessing upon completing this final project.

I would like to express my heartfelt gratitude and appreciation to our project advisor, Prof. Madya. Ir. Dr Hj Abdul Rahman Omar for his endless contribution and valuable guidance that helped me in numerous ways throughout the preparation of this project.

Also, we wish to express our gratitude to Design section powertrain Proton, Shah Alam, for their technical support and supply of information especially Dr Cheilliah, Mr. Manap, Mr Zulkiflee Bidin and others staff for the consultation and providing us the information and knowledge. Also to CaddCam Group of companies staff especially to Mr. Chin Karl Wai on providing their expertise for completing this project.

Not forgetting Mr Ziyadi from UiTM labcam for his cooperation for me to use the laboratory.

Our deepest appreciation also goes to our family for their support and encouragement and deepest thanks to our friends who have either involved directly or indirectly involve in this final year project.

ABSTRACT

Today, the integration of CAD, CAM and CAE system becomes a powerful tool to develop and enhance manufacturing design efficiency, particularly in plastic industries. By using this system, moulders and designer will be able to conduct an analysis in CAE subsequently after completing their design in CAD to determine whether the design is free from errors before the CAM work can take place.

In this project, the main objective is to evaluate the effectiveness of integration between CAD/CAE systems. For the purpose of design, Ideas software was used for the CAD system, Software was used for CAE system. In designing the intake manifold, the implementation of CAD/CAE was fully used. The intake manifold has been designed in such a way to satisfy the required specifications and standard design from Japan.

Through this, the capabilities of CAD/CAE, which can be used directly in design practice. The important gain of this project is to understanding the integration of CAD/CAE, which lead to benefit, especially in design, engineering and manufacturing.

TABLE OF CONTENTS

CONTENS										
PAGE TITLE										
ACKNOWLEDGEMENT ABSTRACT TABLE OF CONTENTS LIST OF CONTENT										
					LIST OF TABLE					
					CHAPTER	1.0	INTRODUCTION	1		
						1.1	Background	1		
	1.2	Objective of the project	3							
	1.3	Methodology	4							
	1.4	Scope	5							
CHAPTER	2.0	INTAKE MANIFOLD, MATERIAL								
		AND PROCESS	6							
	2.1	Introduction	6							
		2.1.1 Intake manifold	6							
	2.2	Intake manifold material	9							
	2.3	Manufacturing process for intake manifold	13							
	2.4	Advance material for intake manifold	14							

CHAPTER	3.0	CAD/CAE (COMPUTER AIDED DESIGN/						
		ENGI	NEERING)	. 17				
	3.1	Introd	17					
	3.2	CAD/	CAE system	18				
		3.2.1	CAD (Computer Aided Design)	21				
		3.2.2	CAE (Computer Aided Engineering)	25				
	3.3	Advan	tage in using CAD/CAE	30				
		3.3.1	Advantage in using CAD	30				
		3.3.2	Advantage in using CAE	31				
	3.4	Applic	ation of CAD and CAE	31				
		3.4.1	Computer aided system used					
			in education	32				
		3.4.2	CAD and CAE in industries	32				
CASE STUDY								
CHAPTER	4.0	CASE STUDY		34				
	4.1	Introd	34					
			- Modelling step	35				
			- Analysis the CAD files	46				
			- Analysis stage with IDEAS system	47				
CHAPTER	5.0	SUM						
		RECO	OMENDATION	52				
		5.1	Summary And	52				
		5.2	Recommendation	53				
		5,3	Conclusion	53				
REFERENC	~ 4							
	ES			54				