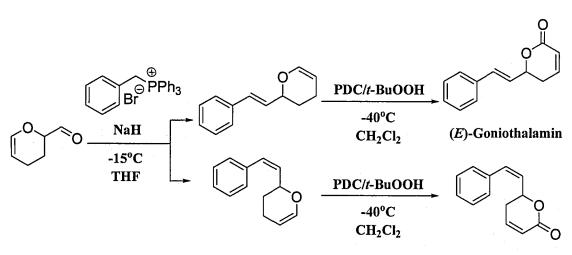
UNIVERSITI TEKNOLOGI MARA

SYNTHESIS OF GONIOTHALAMIN AND ANALOGUES/DERIVATIVES AND CYTOTOXICITY ON JURKAT CELL LINES

MAZLIN BINTI MOHIDEEN


Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Pharmacy

October 2011

ABSTRACT

Goniothalamin is a natural styryllactone with anti-tumor properties through the induction of apoptosis. Goniothalamin and its analogues/derivatives were simply synthesized from commercially available racemic starting material (3,4-dihydro-2*H*-pyran-2-yl)methanol that was converted in the corresponding aldehyde. Various aryl phosphonium salts were synthesized using microwave irradiation (MW). Wittig reactions between the above mentioned aldehyde and phosphonium salts were performed at -15° C in THF leading to the mixture of (*E*)- and (*Z*)-styrylpyrans. Oxidation of these intermediates in presence of *t*-butyl hydroperoxide (*t*-BuOOH) and pyridinium dichromate (PDC) in CH₂Cl₂ at -40°C led to (*E*)- and (*Z*)-isomers of goniothalamin as well as some analogues/derivatives. When tested on lymphoblastic leukemic T cell Jurkat E6.1 cells, (*Z*)-goniothalamin appeared to be the most active derivative. A Structure-Activity Relationships (SARs) study allowed us to establish the relevant structural features for cytotoxic activity of (*Z*)-goniothalamin and some analogues/derivatives.

(Z)-Goniothalamin

ACKNOWLEDGEMENT

A special note of appreciation extended to my supervisor, Prof. Dr. Jean-Frédéric Faizal Weber Abdullah for his assistance, suggestion and constructive comments, given to me throughout the course of this project and encouragement during my work. Also, my thankfulness to Dr. Mohd Zulkefeli b. Mat Jusoh and Dr. A.F.M. Motiur Rahman in their capacity as a co-supervisor.

Not to forget, I fully appreciate and would like to acknowledge Dr. Adnan for helping in obtaining NMR spectra, all the staff in the 'iKUS' (institut Kajian Ubat Semulajadi) now known as 'RiND' (Research Institute of Natural Products for Drug Discovery) laboratory, for the assistance and helpful conservations. To all my team work especially Ms. Suraya bt. Zufkepli and Ms. Nik Salmah bt. Nik Salleh, my family for their support and those who had in one way or another contributed to the progress of this project but I have unintentionally omitted mentioning here, thanks a lot for all that you have given. Most of all, I am very grateful to Allah the only God I worship, for blessing me with a good health to complete this study.

Finally, I would like to take this opportunity to express my sincere gratitude to the Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) and Ministry of Science and Technology Malaysia (MOSTI), for the PGD scholarship for giving me a full support in terms of knowledge and financial.

Thank you.

TABLE OF CONTENTS

			Page		
ABS	ABSTRACT				
ACK	ACKNOWLEDGEMENTS				
TAB	TABLE OF CONTENTS				
LIST	LIST OF TABLES				
LIST	OF FIG	JURES	xi		
LIST	OF SCI	HEMES	xiii		
LIST	OF AB	BREVIATIONS	XV		
CHA	PTER 1	I: INTRODUCTION	а. 1.		
1.1	Backg	ground	1		
1.2	Objec	tives of this study	5		
1.3	Scope	and limitation	5		
CHA	PTER 2	2: LITERATURE REVIEW			
2.1	Structure-Activity Relationships (SARs) of goniothalamin (1)				
	and its analogues/derivatives				
2.2	Total synthesis of goniothalamin (1) in literature				
	2.2.1	Synthesis of goniothalamin (1) using asymmetric	13		
		allylation/acylation/metathesis methods			
	2.2.2	Wittig reaction, Swern oxidation and sulfoxide-modified	19		
		Julia olefination			
	2.2.3	Cosford cross-coupling protocol	24		
CHA	APTER 3	3: EXPERIMENTAL PART/DATA ANALYSIS			
3.1	Materials and equipment for the synthesis of styryllactone				
	3.1.1	Chemicals/solvents or reaction application general remarks	28		
	3.1.2	Chromatographic analysis for 'reaction control'	29		
	3.1.3	Reaction work-up general remarks	30		
	3.1.4	Column chromatography	30		

• V

3.2	Substance identification/specific equipment				
	3.2.1	NMR spectroscopy	31		
	3.2.2	Time-of-flight mass spectroscopy (MS-TOF)	31		
	3.2.3	Melting points	32		
	3.2.4	Special equipment	32		
		3.2.4.1 Microwave irradiation (MW)	32		
3.3	Synthesis of phosphonium salt				
	3.3.1	Procedure for the synthesis of benzyl triphenylphosphonium	33		
		bromide (69) under microwave irradiation (MW) reactions			
	3.3.2	Benzyl triphenylphosphonium bromide (69)	34		
	3.3.3	(Naphthalene-2-yl-methyl) triphenylphosphonium bromide (70)	34		
	3.3.4	(Anthracene-2-yl-methyl) triphenylphosphonium chloride (71)	35		
	3.3.5	3-methoxybenzyl triphenylphosphonium salt bromide (72)	35		
	3.3.6	4-methoxybenzyl triphenylphosphonium salt bromide (73)	36		
	3.3.7	3,5-dimethoxybenzyl triphenylphosphonium salt bromide (74)	36		
	3.3.8	(Pyridine-2-yl-methyl) triphenylphosphonium bromide (75)	37		
	3.3.9	(Anthraquinone-2-yl-methyl) triphenylphosphonium bromide (76)	37		
	3.3.10	(Anthraquinone-2-yl-methyl) triphenylphosphonium chloride (77)	38		
	3.3.11	(7-methoxy coumarin-4-yl-methyl) triphenylphosphonium	38		
		bromide (78)			
3.4	Procedure for the synthesis of 3,4-dihydro-2 <i>H</i> -pyran-2-carbaldehyde 39				
	3.4.1	3,4-dihydro-2H-pyran-2-carbaldehyde (80)	39		
3.5	Synthesis of (Z)- and (E)-goniothalamin intermediates (86 and 87) 46				
	and some analogues/derivatives 89-97				
	3.5.1	Procedures for the synthesis (Z)- and (E)-goniothalamin	40		
		intermediates 86 and 87			
	3.5.2	2-(Z)-styryl-3,4-dihydro-2H-pyran (86)	41		
	3.5.3	2-(E)-styryl-3,4-dihydro-2H-pyran (87)	41		
	3.5.4	3,4-dihydro-2-((Z)-2-(naphthalen-3-yl)vinyl)-2H-pyran (89)	42		
	3.5.5	3,4-dihydro-2-((E)-2-(naphthalen-3-yl)vinyl)-2H-pyran (90)	42		
	3.5.6	2-(3-methoxystyryl)-3,4-dihydro-2H-pyran (91)	43		
	3.5.7	2-(4-methoxystyryl)-3,4-dihydro-2H-pyran (92)	43		
	3.5.8	(4-methoxystyryl)-3,4-dihydro-2H-pyran (93)	44		
	3.5.9	2-(3,5-dimethoxystyryl)-3,4-dihydro-2H-pyran (94)	44		