UNIVERSITI TEKNOLOGI MARA

EXTRACTION OF OIL FROM HIBISCUS CANNABINUS L. SEEDS USING SUPERCRITICAL CARBON DIOXIDE EXTRACTION

SITINOOR ADEIB BINTI IDRIS

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Chemical Engineering

January 2011

ABSTRACT

Mass transfer coefficient determination is the main objectives of this study. The importance of finding the mass transfer coefficient specifically for Hibiscus cannabinus L, oil is for design and sizing of the extractor. Besides that, the role of mass transfer coefficient is essential to enhance the extraction rate. Other than that, the reason of choosing the Hibiscus cannabinus L. plant seeds as the raw material for this study is because of; currently this plant is in growing demand in Malaysia. Under the East Cost Economic Region (ECER) plan, about 10,000 hectares of land in Kelantan and Terengganu will be planted with Hibiscus cannabinus L. as an alternative plant for tobacco. In order to determine the mass transfer coefficient of the Hibiscus cannabinus L. seed oil, the oil is needed. Hence, Supercritical Carbon Dioxide (SC-CO₂) extraction is performed to obtain the oil. Current conventional method extracting *Hibiscus cannabinus L*, seed oil was by using solvent extraction. Several disadvantages of using this conventional method were the usage of organic solvent such as hexane which is toxic and hazardous to the environment and surroundings. Besides, oil that was extracted needs to undergo many processes to remove the trace of hexane and odour. In addition, separation process is needed to separate the oil and the solvent, hence increasing the cost and leading to higher energy consumption. Supercritical Carbon Dioxide (SC-CO₂) extraction method was chosen over the solvent extraction to extract oil from Hibiscus cannabinus L. seed because of its environmental and time consuming factor. Besides that, the oil from the *Hibiscus cannabinus L*, seeds is believed to be an excellent source of edible oil because of its high amount of polyunsaturated fatty acid (PUFA) which is essential to human growth. The oil can be used in salad and cooking oils. Since the oil contains linoleic acid, the oil can be used in the manufacture of soap and also other beauty products. In this study, SC-CO₂ extraction was used to extract oil from *Hibiscus cannabinus L*, seed at temperature ranges from 50°C to 80°C and pressure ranges from 5000 psi to 7000 psi for 40 minutes with constant CO₂ flow rate of 24 ml/min. From the experiments conducted, it was found that the highest percentage oil yield was obtained at temperature of 80 °C and pressure of 5000 psi with 8.66%. Maximum solubility of the oil in SC-CO₂ was found to be 0.047719 gm oil/ gm CO₂ at temperature of 80 °C and pressure of 5000 psi. The solubility of Hibiscus cannabinus L. oil in SC-CO₂ was estimated using three correlations i.e Chrastil (1982), Adachi-Lu (1983) and Del Valle-Aguilera (1988). The experimental data obtained showed a good agreements with the all three models with coefficient of correlation (R^2) of all above 0.9. By using kinetic model by Andrich et al. (2001), it was found that the highest mass transfer coefficient k, of *Hibiscus cannabinus L*, was 0.0072 s⁻¹ at temperature of 80 °C and pressure of 7000 psi. Modeling of extraction curve was done using model of Sovova et al. (1994, 1996, 2005). It was found that the model has good agreement with experimental data with coefficient of correlation, R^2 is above 90 percent.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my research supervisor, Dr. Norhuda Ismail for her patience and guidance throughout my research. I am thankful to our technicians; En. Rizuan Razlan and En. Mustaffa Mokhtar in helping me running the experiments and handling of the equipment. My special thanks to Pn. Rusni Saleh and Pn. Khuzairin Sanuri for their time whenever I have needed it. I also would like to thank all my postgraduates' friends in Universiti Teknologi MARA especially in Chemical Engineering faculty who have helped in making me feel like home here. I am grateful to my family for their encouragement and advice throughout my studies here. I am also grateful to Mr. Marshall from Supercritical Fluid Technologies, Inc especially for his guidance in using the supercritical fluid extractor and also to Pn. Masnira and Malaysian Agricultural Research and Development Institute (MARDI) for providing me the samples of *Hibiscus cannabinus L*. seeds for my research. Finally, special thanks to my dean, Prof Dr. Sharifah Aishah S. A. Kadir, my postgraduate coordinator, Dr. Kamariah Noor Ismail and my faculty for their support in completing my thesis.

TABLE OF CONTENTS

TITL	JE PAGE	Page
AUTHOR'S DECLARATION		
ABSTRACT		
ACKNOWLEDGEMENTS		iv
TABLE OF CONTENTS		v
LIST OF TABLES		ix
LIST OF FIGURES		х
LIST OF PLATES		
LIST	OF ABBREVIATIONS/NOMENCLATURE	xiii
СНА	APTER 1: INTRODUCTION	1
1.1 Introduction		1
1.2 Objectives of study		4
1.3 Scope of study		4
1.4 Structure of work		5
1.5 Significant of research		6
CHA	APTER 2: LITERATURE REVIEW	7
2.1	Supercritical Fluid (SCF)	7
2.2	Properties of Supercritical Fluid	9
	2.2.1 Density	9
	2.2.2 Diffusivity	11
	2.2.3 Solvating Strength	12
2.3	SC-CO ₂ characteristics	13
2.4	Supercritical Carbon Dioxide (SC-CO ₂) Extraction of Plant Seeds	14
	2.4.1 Hibiscus cannabinus L. seeds	23
	2.4.2 Extraction profiles	24
2.5	Mass Transfer and Solubility Studies in Supercritical Carbon Dioxide	25
	(SC-CO ₂) Extraction of Oil seeds	
	2.5.1 Mass transfer	28
	2.5.2 Mechanism of transport from solids	30

2.6	Mathematical model for SC-CO ₂ extraction of oil seeds	32
	2.6.1 Mathematical modeling	36
CHA	APTER 3: RESEARCH METHODS	38
3.1	Materials	38
3.2	Methods	38
	3.2.1 Moisture content analysis	38
	3.2.2 SC-CO ₂ extraction apparatus	39
	3.2.3 SC-CO ₂ extraction procedure	41
	3.2.4.Solvent extraction method	42
	3.2.5 Gas Chromatograph - Mass Spectrometry (GC-MS)	44
	3.2.6 Summary of Research Methodology	45
CH	APTER 4: RESULTS AND DISCUSSION	47
4.1	Preliminary Studies Results	47
	4.1.1 Particle Size	47
	4.1.2 Moisture Content	49
4.2	Extraction Yield	49
	4.2.1 Effects of 40 minutes of extraction of Hibiscus cannabinus L. on	51
	mass of CO_2 consumed at various pressures and temperatures	
	4.2.2 Extraction curves	54
	4.2.3 Effect of temperature	59
	4.2.4 Effect of pressure	60
4.3	Solubility	61
	4.3.1 Solubility of Hibiscus cannabinus L. in SC-CO2	63
4.4	SC-CO ₂ density	70
4.5	Mass transfer behavior	72
	4.5.1 Mass transfer coefficient	73
4.6	Gas Chromatograph Mass Spectrometry	79
4.7	Color	81
4.8	Mathematical modeling	82