UNIVERSITI TEKNOLOGI MARA

A COMPUTER SIMULATION PROTOTYPE OF SIMPLIFIED COGNITIVE ARCHITECTURE MODEL

SHAM SHUL SHUKRI MAT (2010895666)

IT Project Report submitted in partial fulfillment of the requirements for the degree of

Master of Science in Information Technology (CS770)

Faculty of Computer & Mathematical Sciences

July 2012

ABSTRACT

Notwithstanding our phenomenal advancement in computing power and its resulted innovations, there is a growing concern that our ability to interact with computers using our natural language does not advanced proportionally. The cognitive capability of a computer is still very limited. This study explores the feasibility of implementing non-calculation intensive cognitive architecture model by simplifying complex cognitive architecture down to its essentials. Based on the simplified version of cognitive architecture model, a prototype of object oriented neural network based simulation has been successfully created and tested. The effectiveness of the tested prototype validates the potential of the simplified model. Accordingly, this would potentially enable mainstream devices to have computing cognitive capability. Furthermore, the simplified model would provide a starting platform to further explore natural command processing in artificial intelligence and more complex machine-learning capability.

Keywords: neural network, connectionism, machine learning, artificial intelligence

ACKNOWLEDGEMENT

This report would not have been possible without the advice, guidance, and support from my supervisor, Dr. Sharifalillah Nordin, my family, and other acquaintances that directly or indirectly facilitate me in completing this report.

TABLE OF CONTENTS

	Page
STUDENT'S DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE	ix

CHAPTER ONE: INTRODUCTION

1.1 Introduction				1
1.2 Research Ba	ckground			1
1.3 Statement	of		Problems	2
1.4 Research Qu	estions			3
1.5 Obj	ectives	of	Study	3
1.6 Significance	s of Study			4
1.7 Scope of Study			5	
1.8 Limitation and Delimitation			5	
1.9 Research Planning Gantt chart			6	
1.10 Report Out	line			7

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction				8
2.2 Cognitive Scien	nce Background			8
2.3 Human-Compu	ter Interaction			10
2.4 Expectation of	Computer Intellige	ence		10
2.5 Reality and Iss	ues of Computer In	ntelligence		11
2.6 Structure	of	a	Neuron	13
2.7 Cognitive Arch	itecture Models			15
2.7.1 ACT-R				15

2.7.2 LID	А	16
2.7.3 GMU-BICA		17
2.7.4 Unified Model-SOAR		19
2.7.5 Detail Comparative Summary	v of Selected Models	20
2.8 Adaptation of Cognitive Architecture	to Computer Architecture	20
2.9 Object Oriented Technology and Agi	le Methodology	21
2.10 Summary		23

CHAPTER THREE: RESEARCH METHODS

3.1 Introduction	24
3.2 Methodology	24
3.3 Conceptual Framework	25
3.4 Simplified Cognitive Architecture Model	27
3.5 Summary	28

CHAPTER FOUR: PROTOTYPE DEVELOPMENT

4.1 Introduction	29
4.2 Prototype Requirement Analysis	29
4.2.1 Functional requirements	29
4.2.2 Non-Functional requirements	31
4.3 Prototype Design	31
4.4 Development and Implementation	
4.5 Prototype Specification Testing	35
4.6 Summary	47

CHAPTER FIVE: ANALYSIS AND FINDING

5.1 Introduction	48
5.2 Cognitive Experiment Results	48
5.3 Finding Analysis	51
5.3.1 First objective	52
5.3.2 Second objective	52
5.3.3 Third objective	53