
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH https://doi.org/10.24191/jeesr.v20i1.004

29

Abstract—The increase and growing number of users in the
internet gives a higher requirement to backend application
systems nowadays to be designed to handle thousands of users
traffic concurrently. Microservice architecture is also in a rising
trend which they allow for each service to scale horizontally by
their throughput and load helps to scale the system efficiently
without waste of resources like in the traditional monolithic
application system. Database connection pool helps for backend
systems to access databases efficiently. The present issue is
determining the optimal number of database connections to use in
a microservice based backend system. This paper aims to find the
most suitable amount of database connections in a microservice
setting, where multiple instances of the service are used for
scalability and high availability purposes of the system. The
experiment was conducted by varying the number of database
connections from one to five to ten in both single instance and three
instance services, where the service being examined is the backend
system's roles and permissions service. The results of this
experiment indicate that five database connections provide the
best performance latency result in a microservice architecture
with three service instances. With 2000 requests per second, the
maximum latency was 53ms, while the 99th percentile latency was
19ms. The study contributes by determining the optimal size of a
database connection pool for use in a microservice architecture
with several instances of the service are operating concurrently.

Index Terms—Backend application, database connection pool,
high availability, microservice, scalability.

I. INTRODUCTION
N the past few years in the cloud services domain, we have
seen a trend of companies moving from monolithic

architecture applications to microservices architecture. The idea
of breaking a complex monolithic application that serves the
whole functionality in a single application to multiple loosely-
coupled and single-purpose started with big tech companies like
Apple, Google, Netflix [1–3] due to numerous advantages that
it brings compared to the traditional monolithic architecture.

 Scalability and flexibility are some of the most important
advantages of microservice architecture [4–6]. The traditional
approach on handling scalability is to increase the number of
instances or the size of the whole monolithic application.
Although increasing the number of instances of the application
running can help to achieve high availability and fault
tolerance, the default way to increase scalability is by
increasing the size of the application as it is less complex.
However, in the context of monolithic architecture, this is very
much inefficient because in most cases, there are only a few
particular domains of services that are expected to be used by a
large number of users and require high throughput.

 In microservice architecture, each of the services are
loosely-coupled, serving a single-purpose and independent
from other services [2, 4]. Hence, this allows for the ability to
deploy and scale each service independently and using different
policies from the other services [3, 4].

Most current backend application systems require an
interaction between the application and database to store all
users data. Most legacy backend systems use a direct method to
invoke a call to the database where first the application will
create a database connection in the program, execute the SQL
query to the database, lastly, close the database connection [7,
8]. However, as the application gets bigger and more complex,
this way of making connections to the database is not efficient
as it will greatly increase the system overhead to create and
close the connection frequently [8].

Newer backend application system uses a database
connection pool, where the application will help to create and
maintain the connections so that it can be reused in the future
as required. The general idea is, connections will be in either
two states, whether it is being used or idle [9]. Each time there
is a need to make a database request, the application will check
if there is any idle connection for it to use, else it will create a
new connection for as long as it has not reached the maximum
amount of connection threshold. Postgres databases by default
have 100 ‘max_connections’ limit and if this limit is being hit
under heavy load, the backend application will return an error
to end users [9, 10].

Database Connection Pool in Microservice
Architecture

Nur Ayuni Nor Sobri, Mohamad Aqib Haqmi Abas, Ahmad Ihsan Mohd Yassin, Megat Syahirul
Amin Megat Ali*, Nooritawati Md Tahir and Azlee Zabidi

I
This manuscript is submitted on 16th December 2021 and accepted on 23th

February 2022. The work is funded by the Ministry of Higher Education,
Malaysia through the Long-term Research Grant Scheme (600-RMC/LRGS
5/3 (001/2020)).

Nur Ayuni Nor Sobri and Mohamad Aqib Haqmi Abas are postgraduate
students with the School of Electrical Engineering, College of Engineering,
Universiti Teknologi MARA, 40450 Shah Alam, Malaysia.

Ahmad Ihsan Mohd Yassin and Megat Syahirul Amin Megat Ali are with
the Microwave Research Institute, Universiti Teknologi MARA, 40450 Shah
Alam, Malaysia. Nooritawati Md Tahir is with the Institute for Big Data
Analytics and Artificial Intelligence, Universiti Teknologi MARA, 40450
Shah Alam, Malaysia (Email: megatsyahirul@uitm.edu.my)

Azlee Zabidi is with the Faculty of Computing, College of Computing &
Applied Sciences, Universiti Malaysia Pahang, 26600 Pekan, Malaysia.

*Corresponding author
Email address: megatsyahirul@uitm.edu.my

1985-5389/© 2022 The Authors. Published by UiTM Press. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.20 APR 2022

30

Some backend applications give the developer the flexibility
to choose their own configurations for managing the pool. This
is often important as each application will have their own
different requirements. In general, a medium sized monolithic
application will usually opt with the default amount of
maximum database connections, which is 100 database
connections if using Postgres database. Having too high amount
of maximum connections can also cause problems as it can
overwhelm the database and application system, requiring
larger amount of memory (RAM) for maintaining the
connections and high overhead in terms of CPU cycle and RAM
for setting up and closing the connection.

We have found relevant articles related to our work in using
database connection pool. In [11], the authors use a database
connection pool when developing their Student Information
System (SIS), a three-tier web application that allows registrars
to perform tasks that involve system setup, admission,
registration, graduation grades processing and report. The SIS
system was developed using Java and the authors set up a JDBC
connection pool to solve the possible issue of scalability of the
system. A study of database connection pool done in [7], shows
comparison between traditional connection pool with tomcat,
hibernate and the new proposed connection pool. The result
shown from the study shows how the differences of methods
used in managing the connection pool directly affects the
performance of the system.

In both [12, 13], the authors study the security aspect of
database connection pool in three-tier web systems. In [12], the
authors use a formal model of three-tier web system and few
security problems faced in the web system were found from the
model. Few methods on solving the security issue were
introduced and proposed such as securing application, terminal
user tracing and modifying the previous standard on securing
the database connection pool. Database connection pool audit
system (DCPAS) is proposed [13] to trace identity of the end
user and bind the operations done by the user to the execution
of the SQL statements to the database. The proposed DCPAS
allows for a better security audit, as the admin will be able to
trace the detailed SQL statements if an illegal user makes an
SQL injection to the system.

Generally, choosing the configuration for database
connection pool, such as maximum amount of connections and
maximum idle time of connection requires performance testing
to ensure that the most suitable configuration is chosen for the
backend application where it would not cause a bottleneck due
to having too low amount of connections and not waste the
system’s resource by having too high amount of connections.
Therefore, this study aims to find the most suitable maximum
amount of database connections in a microservice setting,
where multiple instances of the service are used for scalability
and high availability purposes of the system.

II. PROPOSED ARCHITECTURE AND METHODOLOGY
To tackle the issue of scalability and to achieve high

availability of our services, we propose running multiple
instances of each of our services in production, especially for
services that we anticipate will be hit the most during runtime.

This is to allow load balancing of request load between multiple
instances and having backup instances to serve HTTP requests
when one of the instances is down.

An example of a single service with the proposed architecture
to run in the production server, where there are a total of three
instances that are running for the role and permission service is
shown in Fig. 1. This is only one small service out of multiple
other services that we will run in the production server. The
service handles only the roles and permissions information for
the system.

Any request that requires the roles and permissions logic
from the API gateway will be delegated to this service. As
shown, each instance of the service will connect to the Postgres
database that has the roles table and permissions table.
However, the microservice architecture is flexible and does not
set any hard requirements for database setup. In the production
system we have the option to set up the database on the same
server, set up the database on a different server, or opt with
managed database services which most cloud providers are
offering. However, accessing a database on a different server or
managed service will have an increased network latency due to
the request calls needing to be made to an external server
instead of accessing a database in a different port on the same
server.

Fig. 2 illustrates the roles and permissions table with its
intermediary many-to-many table. We are using a role based

Fig. 1. Multiple instances for role and permission service.

Fig. 2. Roles and permission table.

Sobri et.al.: Database Connection Pool in Microservice Architecture

31

access control (RBAC) authorization model for our system. In
RBAC, users have access to an object, page and module based
on their respective assigned role in the system [14]. Roles are
commonly assigned based on job function and permissions are
defined based on job authority and responsibility of the job.

To find the most suitable maximum amount of database

connections we run the performance testing on this service with
two different scenarios; first, with a single instance as shown in
Fig. 3 and second, with three instances and an Nginx load
balancer as shown in Fig. 4, where the load balancer will route
the client requests traffic to the three application instances.

The load testing is done with Arm64v8 CPU architecture.
The limitation of the platform applies to this project. We also
limit the go runtime (for each instance) to use a single CPU
(with GOMAXPROCS = 1) and 128 MB of memory (ulimit),
however we found neither limiting the CPU and RAM gives
any effect in our experiment as none of the tests would even hit
the limit. However, the situation will be different in production
servers when we deploy the services where we have a more
limited amount of CPU cycles and RAM configuration for our
machine. The benchmark performance testing will be done
using Vegeta load testing tool which is written in Go. In this
test, we are using the default setting of Postgres database as will
be in production without tuning any configuration. We also did
not change for any optimization being done by Postgres for
similar SQL request calls either by its shared buffer cache or
operating system cache method. The only manipulated variable
for this experiment is the maximum number of connections and

the number of instances (for the two different scenario test),
everything else will be similar throughout the test.

We tested on four different amounts of connections for the
database connection pool which are one, five, and ten. The load
tester makes 500, 1,000 and 2,000 requests per second (rps) to
the service. The load test will be done for 5 seconds for each
test. Only one API endpoint will be tested for this experiment,
which is the “/roles” endpoint that will give all the roles in the
database table, including its permissions relation. The reason
that role/permission service are chosen for this experiment is
due to this service being one of the most used in the system.
Multiple endpoints in the system require authorization checks
on whether a specific user has the necessary role and permission
needed to access the endpoint.

III. RESULTS AND DISCUSSION
 Table I shows the result of maximum latency for different

number of requests made to different number of connections in
a single instance service The max latency for 500 requests per
second (rps) made for one, five and ten connections declines as
the number of connections increase. For a single connection the
latency is at 439 ms, then drops to 65 ms when having five
connections and lastly, 24 ms for ten connections. For 1,000 and
2,000 HTTP rps, we can see that having a single database
connection becomes a bottleneck to the service as it requires
9,387 ms and 19,433 ms, respectively. Note that this is without
tuning any shared buffer cache or operating system level cache
for Postgres database default setting, which shows the latency
struggle of having a single connection made to the database.
Meanwhile, for five connections, the service starts to bottleneck
when having 2,000 rps where it recorded 1,658 ms latency. For
1,000 rps the service is still able to tolerate the throughput at
156 ms latency. For ten connections, the latency increases as
the number of requests increase to 1,000 and 2,000 at 120 ms
and 499 ms, respectively, but it is still bearable compared to
having one and five connections.

Table II shows the result of 99th percentile latency for

different number of requests made to different number of
connections in a single instance service. In some benchmark
situations, this number is often used as a realistic measure of
latency where 99 percent of end users will receive this latency,
while maximum latency can show if there has been a sudden
hiccup to a system (that might happen for a single request). The
latency shows the same pattern as in the maximum latency
result, where the latency decreases as the number of

Fig. 3. Single instance for role and permission service.

Fig. 4. Three instances for role and permission service with Nginx as load
balancer.

TABLE I
MAXIMUM LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP REQUESTS
PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE CONNECTIONS

WITH SINGLE INSTANCE SERVICE

Number of
Connections

Requests Per Second

500 1,000 2,000
1 439 ms 9,387 ms 19,433 ms
5 65 ms 156 ms 1,658 ms

10 24 ms 120 ms 499 ms

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.20 APR 2022

32

connections increases and single connection shows a bottleneck
in performance in both 1,000 and 2,000 rps tests. For 500 rps,
single connection gives 204 ms latency, followed by five
connections at 19 ms and lastly, ten connections at 5 ms. For
1,000 rps, single connection still shows a bottleneck result at
7,442 ms, followed by 56 ms for five connections and 33 ms for
ten connections. For 2,000 rps, we can see that five connections
start to show the bottleneck in performance as well at 427 ms,
but this is far lower than 17,749 ms which is recorded by single
connection. Ten connections shows a good performance at 205
ms.

Table III shows the result of maximum latency for different
number of requests made to different numbers of connections
in a three instance service. We can see that even with single
connection, the service does not suffer the same performance
impact as when having only a single instance of service. This
shows that having multiple instances helps to balance the
throughput load. For 500 rps, single connection gives the best
latency at 33 ms, followed by ten connections at 35 ms and
lastly, five connections at 36 ms. For 1,000 and 2,000 rps, five
connections shows far better performance latency compared to
single and ten connections. In 1,000 rps result, five connections
only recorded 30 ms, better than its performance at 500 rps,
followed by single connection at 53 ms, and ten connections at
59 ms. For 2,000 rps, five connections recorded a low 53 ms,
followed by single connection at 165 ms, and lastly ten
connections at 227 ms.

Table IV illustrates the result of 99th percentile latency for
different number of requests made to different numbers of
connections in a three instance service. As seen, five
connections shows the best recorded performance for all 500,
1000 and 2000 rps. In 500 rps, five connections records the
lowest latency with 6 ms, followed by 7 ms by ten connections
and lastly single connection with 7 ms. For 1000 rps, five

connections gives 13 ms latency, followed by 15 ms for single
connection and 18 ms for ten connections. Lastly, for 2000 rps,
five connections only gives 19 ms compared to a single
connection with 55 ms and ten connections with 56 ms.

Both Table III and Table IV, which analyse three service
instances, produce an unexpected result in which the latency for
ten database connection pools is greater than the latency for five
database connection pools, which contradicts the result
obtained when examining a single service instance in Table I
and Table II. One possible explanation for why this occurred
during the experiment is that the connection pools were already
sufficient for the database query, but the additional time was
due to the latency associated with creating new connection
pools rather than reusing the current.

Based on all results shown in this section, we can see that low
number of database connections will start to become a
bottleneck when being hit with a larger load especially with
single instance service, however, the performance gets better
when multiple instances are involved as load balancing the
requests throughput helps to distribute the load instead of
hitting only single instance to serve the requests. Having a
larger amount of connections is not guaranteed to have a better
performance in terms of latency as we can see from the result
in the experiment ran with multiple instances, the diminishing
return effect for this could be caused by multiple factors such
as the algorithm used to assign connection pool to request and
how the performance from the database side when handling
numerous concurrent connections.

TABLE II
99TH PERCENTILE LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP
REQUESTS PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE

CONNECTIONS WITH SINGLE INSTANCE SERVICE

Number of
Connections

Requests Per Second

500 1,000 2,000
1 204 ms 7,442 ms 17,749 ms
5 19 ms 56 ms 427 ms

10 5 ms 35 ms 205 ms

TABLE IV
99TH PERCENTILE LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP
REQUESTS PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE

CONNECTIONS WITH THREE INSTANCES SERVICE

Number of
Connections

Requests Per Second

500 1,000 2,000
1 7 ms 15 ms 55 ms
5 6 ms 13 ms 19 ms

10 7 ms 18 ms 56 ms

TABLE III
MAXIMUM LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP REQUESTS
PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE CONNECTIONS

WITH THREE INSTANCES SERVICE

Number of
Connections

Requests Per Second

500 1,000 2,000
1 33 ms 53 ms 165 ms
5 36 ms 30 ms 53 ms

10 35 ms 59 ms 227 ms

(a)

(b)

Fig. 5. Graph result for 2000 requests per seconds with five database
connections in (a) single, and (b) three instances.

Sobri et.al.: Database Connection Pool in Microservice Architecture

33

In Fig. 5, another noticeable difference we see between
serving load with single instance and multiple instances is we
notice there is a constant spike for every few milliseconds
recorded, which could be because of how the load balancer
works when distributing the load between instances. However,
even with the spike in latency, the overall result of distributing
load with multiple services is far better compared to serving all
the requests with only a single instance.

IV. CONCLUSION
We have presented the load testing done to our service to

obtain the suitable number of database connections for our
database connection pool (DCP). We tested for a single instance
of our role and permission service as it is one of the most used
services in our system, mostly due to authorization middleware
checks for our users to access endpoints. From the result of our
experiment and our proposed architecture for production
environment, we choose five connections configuration as it
gives the best performance for multiple instances service setup
as shown in Table III and Table IV result.

As the microservice design for cloud computing gains
traction in comparison to the traditional monolithic
architecture. The study makes a contribution by establishing the
appropriate size of a database connection pool for usage in a
microservice architecture with several concurrent instances of
the service.

ACKNOWLEDGMENT
The work is funded by the Ministry of Higher Education,

Malaysia through the Long-term Research Grant Scheme (600-
RMC/LRGS 5/3 (001/2020)).

REFERENCES
[1] A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa, I.

Beschastnikh, and J. Rubin, “Supporting microservice evolution,” in 2017
IEEE Int. Conf. Softw. Maint. Evol., Shanghai, China, 2017.

[2] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C.
Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,
Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark suite
for microservices and their hardware-software implications for clound &
edge systems,” in Proc. 2019 Archit. Support Program. Lang. Oper. Syst.,
Providence, RI, 2019.

[3] V. Singh and S. K. Peddoju, “ Container-based microservice architecture
for cloud applications,” in 2017 Int. Conf. Comput. Commun. Autom.,
Greater Noida, India, 2017.

[4] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.
Safina, “Microservices: How to make your application scale,” in
Perspectives of System Informatics. PSI 2017. Lecture Notes in Computer
Science, A. Petrenko and A. Voronkov, Eds, Moscow, Russia: Springer,
2017, pp. 95–104.

[5] W. Hasselbring and G. Steinacker, “Microservice architecttures for
scalability, agility and reliability in e-commerce,” in 2017 IEEE Int. Conf.
Softw. Archit. Workshop, Gothenburg, Sweden, 2017.

[6] I. Asrowardi, S. D. Putra, and E. Subyantoro, “Designing microservice
architectures for scalability and reliability in e-commerce,” J. Phys.: Conf.
Ser., vol. 1450, no. 1, 2020.

[7] X. D. Xu, B. Li, Q. M. Lu, X. Y. Yan, and J. L. Li, “A study of database
connection pool,” Appl. Mech. Mater., vol. 556-562, pp. 5267–5270,
2014.

[8] F. Liu, “A method of design and optimization of database connection
pool,” in 2012 4th Int. Conf. Intell. Hum.-Mach. Syst. Cybern., Nanchang,
China, 2012.

[9] A. Edwards, Let’s Go Further, pp. 116–122.
[10] A. Trzop, Estimate database connections pool size for Rails application,

Apr. 2021. Accessed on: Nov. 1, 2021. [Online]. Available:
https://docs.knapsackpro.com/2021/estimate-database-connections-pool-
size-for-rails-application

[11] F. Al-Hawari, A. Alufeishat, M. Alshawabkeh, H. Barham, and M.
Habahbeh, “The software engineering of a three-tier web-based student
information system (MyGJU),” Comput. Appl. Eng. Educ., vol. 25, no. 2,
pp. 242–263, 2017.

[12] X. D. Yu, M. Y. Zhang, M. Q. Zhu, K. H. Xu, and Q. C. Xiang, “Security
problem modeling of database connection pool,” Appl. Mech. Mater., vol.
543-547, pp. 3276–3279, 2014.

[13] X. D. Yu, M. Y. Zhang, M. Q. Zhu, K. H. Xu, and Q. C. Xiang, “Research
on the Security Audit of Database Connection Pool,” Appl. Mech. Mater.,
vol. 543-547, pp. 3286–3289, 2014.

[14] N. Meghanathan, “Review of access control models for cloud
computing,” in Comput. Sci. Inf. Technol., Delhi, India, 2013, pp. 77–85.

	I. INTRODUCTION
	II. Proposed Architecture and Methodology
	III. Results and Discussion
	IV. Conclusion
	Acknowledgment
	References

