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Abstract—This paper presents the implementation particle 

swarm optimization (PSO) embedded in Arduino Nano for 
proportional-integral-derivative controller (PID) tuning as a 
validation for real-time hardware application on the photovoltaic 
maximum power point tracking (MPPT) system. The Arduino is 
interfaced to the MATLAB/Simulink via serial communication 
device to provide duplex communication for PID tuning. The 
performance of PID tuning using PSO in Arduino was compared 
with the performance of MATLAB PID tuner toolbox based on 
simulation result via Simulink. The embedded PSO-PID provides 
better performance of 10 times higher compared to MATLAB 
PID tuner. 
 

Index Terms—PV, MPPT, PSO, PID, Arduino Nano. 

I. INTRODUCTION 
ROPORTIONAL-INTEGRAL-DERIVATIVE (PID) controller are 
widely used in various industrial application for the 
controls of machines, and instruments. According to  [1], 

the PID controller was first introduced in 1910. On some 
occasion, either the proportional P, proportional-integral PI, or 
proportional-derivative PD controllers is used instead of the 
PID, which depending on the application, and design. The 
controller is a mathematical based controller which is widely 
used in closed-loop system. They can offer control scheme 
such as reference input tracking, and disturbance rejection in 
the system’s plant. 

Application of PID controller in maximum power point 
tracking (MPPT) for photovoltaic (PV) system is to control the 
switching devices in the power converter. The absence of 
controllers such as lag-lead compensator, PID controller, or 
fuzzy logic controller in PV-MPPT system will causes the 
power optimization process for solar generator become slow, 
and prone to high steady-state error [2]–[6]. This will reduce 
the overall efficiency of PV solar energy harvesting. 

Shown in Fig. 1 is the block diagram the control system. 
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The control plant of the system, G(S), includes PV module, 
DC-DC converter, and resistive load. The control input R(s) of 
the process loop is the voltage reference Vref fed by MPPT 
controller, whereas the feedback signal H(s) is the 
instantaneous voltage of PV module VPV. In this control 
scheme, the input of the PID controller is the error between 
Vref, and VPV. 

There is numerous method of PID tuning. Some of them are 
by using the Ziegler-Nichols’ (Z-N) technique, the Cohen-
Coon technique, and gain-phase margin technique [7]. 
Nevertheless, the PID controller can be also tuned using 
computation intelligence (CI) techniques by either self-
adaptive fuzzy, or evolutionary computation (EC) [8]. 

 

 
Fig. 1. General block diagram for the closed-loop PV-MPPT system  

The PID tuning method proposed in this paper is by using 
the particle swarm optimization (PSO) algorithm [9] due to the 
fact that this method independent from human expertise in 
tuning process, while can be easily applied to different PV 
system [10]. Furthermore, PSO algorithm is preferred for PID 
optimization process instead other algorithms in evolutionary 
algorithm (EA) family because the PSO have only three steps 
in the algorithm [11]. Due to low requirement of memory 
capacity for data processing, thus, PSO is more viable for the 
implementation on low-cost real-time hardware. 

II. PHOTOVOLTAIC MPPT SYSTEM 
PV system is an electrical generation system that can be 

built from integration of PV modules; that make-up from PV 
cells. PV cells are made of semiconductor materials, with 
similar working principles to other semiconductor devices 
such as photo-transistor, photo-resistors, photo-detectors, and 
others. As a result, PV cells also inherit the non-linear 
electrical current-to-voltage (I-V) relationship that are rely on 
the ambient environment such as the intensity of incidence 
light (solar irradiance ψ), and the temperature of the solar cell 
Tcell.  

These two factors produces different I-V curve and their 
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corresponding power-to-voltage (P-V) curve as shown in Fig. 
2. A PV system that directly connected to the electrical load 
will operate at non-optimum parameters because the operating 
points of PV cells are impedance-dependent. Moreover, the 
optimum operating parameters, or the maximum power point 
(MPP) changes dynamically with insolation, and heat acts on 
the solar cell. Hence, the PV system requires devices to 
optimize the operating parameters to the MPP by employs 
MPPT system. 

 

 
Fig. 2. Operating environment effect on PV cell 

 
Generally, MPPT system consist of intermediary power 

converter, MPPT controller, and control loop as exemplified 
in Fig. 3. The DC-DC chopper (buck-boost) is controlled by 
PID controller, based on the command from MPPT. In this 
case, the power converter is controlled by PID controller, 
which receives inputs from MPPT reference voltage, Vref, and 
instantaneous PV voltage, VPV. 

 

 
Fig. 3. Detailed closed loop control of PV-MPPT system 

 
The prime focus of this paper is to verify the feasibility of 

PSO implementation into low-cost microcontroller hardware 

for real-time application by comparing the performance of the 
external hardware-embedded PSO-PID tuning with the 
internal MATLAB PID tuner. Both tuning method are applied 
on the PV-MPPT system model in the Simulink. The 
performance of these tuning method are compared in terms of 
accumulative mean error squared (MSE). 

III. PID TUNING METHODS 
It is worth to mention that Simulink is used as an intrinsic 

control plant for performance analysis of the PID tuning as a 
method to eliminate influence of external disturbances as 
founded in the real hardware environment. This evaluation 
approach is carried out so that the C++ coding of embedded 
PSO-PID algorithm can be tested, debugged, and verified. On 
the other hand, a fair comparison of performance with the 
MATLAB PID tuner can be made via Simulink environment. 

Shown in Fig. 4 is comprehensive Simulink blocks of PV 
system comprise of PV module block model, MPPT, MPPT 
control system, voltage and current sensors, and the buck-
boost converter. The system plant consist of PV panel, MPPT 
controlled DC-DC converter, and load. 

 

 
Fig. 4. Simulink PV-MPPT system 

 
Fig. 5 shows the internal components of MPPT subsystem. 

According to Fig. 5, the MPPT controller receives input 
measurements of VPV, and IPV, while process the tracking 
reference Vref as command input to the control loop. PID 
controller receives error signal from the comparison of Vref and 
VPV on the summing junction. The MPPT also controls the 
input and output of PID controller via ‘Enable’ port.  

 

 
Fig. 5. MPPT controller with PID closed-loop 

 
Fig. 6 displays the MPPT inverted buck-boost DC-DC 

chopper driven by the control loop as presented in Fig. 5. 
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Fig. 6. DC-DC buck-boost converter 

 

A. Arduino PSO-PID Tuning 
PSO-PID tuning via Arduino Nano hardware is carried out 

by interconnecting the MATLAB/Simulink with Arduino 
board by Serial-to USB communication as illustrated in Fig. 7. 
The PSO-PID tuning algorithm was embedded into the 
microcontroller to provide PID gain parameter, while the 
MATLAB/Simulink accomplishes the simulation process to 
obtain the fitness for each particles position. 

 

 
Fig. 7. Block diagram illustration for Arduino PSO-PID tuning 

 
1) The Particle Swarm Optimization (PSO) 

The particle swarm optimization algorithm was introduced 
in 1995 by Kennedy, and Eberhart [9]. The study presents a 
simple algorithm derived from the social interaction concept 
of birds’ flock that can be used to find solutions for wide 
range of non-linear problems by using metaheuristics search 
technique. Conceptually, it has the similarities with genetic 
algorithm (GA) since it uses the notation of “fitness” like 
other family members of evolutionary algorithm (EA) in 
computation intelligence (CI) to represent the performance of 
a solution from the population. 

According to [11], PSO uses less effort in computation to 
achieve the same high quality solutions compared to GA. The 
study present that PSO is proven its advantage with 99% 
statistical confidence. Therefore, the PSO was likely more 
efficient to be employed into low-cost hardware systems for 
online system application such as PV-MPPT system as this 
study. For that reason, PSO was implemented as PID tuner in 
this study. 

Fundamentally, PSO algorithm searches the optimum 
parameters by iteratively updates the particles’ velocity and 
position until the fitness, and objective of the optimization are 
met.  

According to Fig. 8, after the initialization, the algorithm 
waits for iterative fitness computation from individual particle 
position. Subsequently, the current best particle position pbest 
is defined by determine the lowest MSE in the swarm fitness. 

 

 
Fig. 8. PSO-PID algorithm flowchart 

 
After the fitness of all particle in the population have been 

testified individually, the current best fitness f(pbest) of the 
swarm is compared to the global best fitness f(gbest). The 
fitness functions for each particle were evaluated as mean 
error squared, MSE of input voltage reference, Vref and the 
actual instantaneous voltage, VPV. The fitness function for PSO 
is shown in (1). 
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where )( k
isf  is the fitness of the current particle, and T is the 

total simulation data point. 
The comparison to determine the pbest, and gbest depends on 

the “objective function” of the optimization process. In the 
case of PID tuning, it is necessary for the control system to 
have the lowest error as possible, thus, the resultant “objective 
function” is to determine pbest, and gbest of the lowest MSE as 
shown in Fig. 8. 



INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 13 DEC 2018 

 

Essentially, the PSO uses equation (2) and (3) as the 
respective velocity and position update function for its particle 
movement. The influence of the swarm and the global optima 
position on the particle’s position is illustrated as in Fig. 9. 
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where, 
k  is the kth iteration; 
i  is the particle number of a given swarm; 

1r  and 2r  is random number as learning factor for individual 
particle to prevent entrapment of particles in local optima 

k
iv  is the current particle velocity; 
k
is  is the current particle position; 

w is the swarm weight, or inertia factor; 
c1, and c2 are the particles, and swarm confidence factor;  
pbest is particle position with the best fitness in the swarm, or 
iteration; 
gbest is the global best particle position. 

 

 
Fig. 9. Movement of particle under swarm influence 

 
2) Hardware Implementations 

The PSO-PID tuning was carried out using hardware as 
shown in Fig. 10. This tuning procedure employs master/slave 
programming; hardware embedded program (master), and 
MATLAB m-file (slave). The PSO-PID tuning program is 
embedded in microcontroller, while the m-file program in 
MATLAB is used to parse parameters between hardware, and 
Simulink, back and forth. The device for hardware-to-software 
interfacing is shown in Fig. 11.  

 

 
Fig. 10. Hardware for PSO-PID tuning on Simulink model 

 

 
Fig. 11. USB-Serial FTDI FT232RL communication chip breakout board. 

 
Fig. 12 shows the program flowchart for PSO-PID tuning 

via hardware-to-MATLAB interface. In the beginning, the 
PSO parameters initialize in the hardware memory, and wait 
for MATLAB slave acknowledgement before begin 
transmitting the PID parameter. The PID gains from the 
Arduino will be parsed to Simulink. Subsequently, the MSE 
fitness data from the simulation run will be sent back to the 
master hardware. The optimization process carried out by the 
master device iteratively until the fitness of the population 
converges. 

 

 
Fig. 12. Flowchart of embedded PSO-PID program (master) 

 
Shown in Fig. 13 is the output verbose of the code 

compiling for PSO-PID MATLAB tuner embedded on 
Arduino Nano. The memory consumption for the program and 
variables are 47% of 30720 byte, and 55% of 2048 byte, 
respectively. 
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Fig. 13. PSO-PID MATLAB tuner code compilation output verbose 

 
Fig. 14 and Fig. 15 shows snippet of PSO-PID coding for 

velocity, and position update function. 
 

 
Fig. 14. PSO velocity update function 

 

 
Fig. 15. PSO position update function 

 
The Fig. 16 shows the running process of PSO-PID tuning 

in the MATLAB command window, while Fig. 17 shows the 
simulation run to find the particle fitness. The fitness of the 
particle is determined by the mean sum of squared error 
between the reference signal Vref and the instantaneous PV 
voltage, VPV. 

 

 
Fig. 16. PSO-PID tuning process in MATLAB command window 

 

 
Fig. 17. Simulation runs for PSO-PID tuning 

 
The iteration of the PSO stopped after the fitness between 

particles in the swarm converges with the standard deviation 
lower than 0.1. The optimized PID parameters were returned 
by the gbest position as follows; 

• Proportional gain, Kp = 6.4391 
• Integral gain, Ki = 9.9361 
• Derivative gain, Kd = 8.6265 
• Derivative filter, N = 100 

 

B. MATLAB PID Tuner Toolbox 
Since the PV system consist of non-linear system response 

due to the PV module, and non-linear switching response of 
the power converters, the plant of the system must be 
linearized by simplify the plant with mathematical modelling 
via system identification process.  

As shown in Fig. 18, the process initiates from input-output 
(I/O) response data sampling. Subsequently, the plant is 
estimated and the fitness of the model output is compared with 
the sampled data. If the fitness of the model is less than 80% 
of the I/O sample, the plant will be re-modelled with new 
structure. Otherwise, the linearized model will be applied into 
PID tuner toolbox for tuning. Nonetheless, this linearized 
model only used in the PID tuner toolbox to simplify the non-
linearity of the system plant. 

The performance of the newly acquired PID parameters will 
be tested with the simulation blocks as demonstrated in Fig. 4, 
by replacing the MPPT with a step input, purposely to 
compare with the performance PSO tuned PID controller. 
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Fig. 18. Process flows for PID tuning using MATLAB PID tuner toolbox 

 
1) Input-Output Sampling 

To begin with, the I/O data of the system was sampled by 
repeatedly inject the step input directly into the input of the 
PID controller, while bypassing the input from MPPT and the 
feedback loop. Thus, the control system operates as open-loop 
control. The PID controller is set to P-only mode with 
proportional gain, Kp = 1 for linear modelling purpose. 

Fig. 19 shows present I/O sampling result using step input 
with rise time at 0.0005s, until 0.01s. The sample time Ts for 
I/O data sample is 1x10-6s per iteration. 

 

 
Fig. 19. I/O response data sampling for plant identification 
 

2) Plant Identification 
After the data sample is obtained, the model is then 

estimated via system identification approach by using 
structures by either of one-pole, two real-poles, underdamped 
pair, and underdamped with real-pole transfer function, and 
state-space. All of the mentioned structures are tested while 
their fitness was compared to each other. In conclusion, 
underdamped pair have the highest fitness value besides 
having the simpler form of equation compared to state-space. 
Exhibited in Fig. 20 is the linear plant modelling using 
underdamped pair transfer function. The angular frequency, 
Tω, and damping ratio, ζ are manually adjusted so that the 
identified data intersect as close as possible on the 
identification data obtained from the I/O sampling. 

 

 
Fig. 20. Linear model plant estimation 

 
The identified model is further fined-tuned by using the 

auto estimate function of the toolbox in order to achieved 
fitness of 87.37% as exemplified in Fig. 21. 
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Fig. 21. Plant identification for linear model 

 
The yield of the modelling process for the underdamped 

pair transfer function (4) as below; 
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where the value of gain, K, angular frequency, Tω, and 
damping ratio, ζ are 21.551, 0.00021141, and 0.255 
respectively. Thus, the transfer function for linear model is 
simplified as in (5). 
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3) PID Tuning 

Fig. 22 and Fig. 23 are the PID tuner window, and PID 
controller specifications, correspondingly. The tuner can 
simply be used by adjust the control slider for the response 
time, and the transient behaviours. It is desirable that the 
controller to be able to provide the response time, oscillations, 
and errors as minimal as possible. From the tuned parameters, 
the achieved rise time is 0.00002s, with 0% overshoot. 

 
Fig. 22. MATLAB PID tuner tool 

 

 
Fig. 23. MATLAB PID parameter and performance 

 
It is worth noting that, the PID tuning by the toolbox uses 

the linearized plant model, therefore, the performance might 
be different when the tuned PID parameter applied into the 
non-linear PV system. 

 

IV. PERFORMANCE COMPARISON 
By utilizing both methods to obtain PID gain parameters, 

the performance of the controller is evaluated in simulation 
stage from Simulink block as shown in the Fig. 4. The system 
block is injected with unit step input with amplitude of 15V 
reference voltage, Vref. The parameters for both tuning method 
are assessed in Table 1. Fig. 24 and Fig. 25 show the step 
response of closed loop PID control response using MATLAB 
PID tuner toolbox, and Arduino PSO-PID tuning, respectively. 

 
TABLE I 

SIMULATION PARAMETERS OF PID TUNING METHOD 

PID tuning method MATLAB PID Tuner 
Toolbox 

Arduino PSO-PID 
Tuner 

Proportional gain, Kp 9.5594 6.4391 
Integral gain, Ki 6039.1658 9.9361 
Derivative gain, Kd 0.003621 8.6265 
Derivative filter, N 12375568.5142 100 
Settling time (seconds) 0.003501 0.000203 
Mean squared error, 
MSE 1.009891 0.1025 

 

 
Fig. 24. Step response of closed loop PID control by MATLAB PID Tuner 
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Fig. 25. Step response of closed loop PID control by PSO-PID tuning 

 
From the step response test, it is observed that PSO-PID 

method has the fastest response time compared to the 
MATLAB-tuned controller. The PSO-PID method achieves 
steady-state at t = 0.703ms. Thus, the time taken for the plant 
output to settle to step input tss is 0.203ms (note that unit step 
rise time tr = 0.5ms). In contrast, MATLAB-tuned PID takes 
time to settle for 3.501ms. The recorded MSE for MATLAB-
tuned PID is 1.009891. While for PSO-PID method, MSE 
successively reduced to 0.1025.  

Since the embedded PSO-PID tuning only takes about one-
tenth of the response time of MATLAB-tuner method, 
therefore, the PSO-PID shows its advantage over the 
counterpart. 

V. CONCLUSION 
From the following results, the PSO-PID algorithm 

embedded in the 8–bit microcontroller proves its feasibility, 
and effectiveness by successfully optimize the PID controller 
by provide about 10 times improvement compared to 
MATLAB PID tuner in terms of MSE, and response time. 
Moreover, PSO-PID requires less step in tuning procedure 
since it does not require collection of data for off-line system 
identification. Besides that, the tuning process is also reliable 
and independent from human supervision. Therefore, the PSO-
PID can be identified as an adaptive tuning method that can 
directly embedded to the real PV-MPPT hardware of any 
setup. Furthermore, the proposed PSO-PID tuning method 
consumes low capacity of flash memory, and processing 
power. Hence, PSO is viable for the implementation in low-
cost microcontroller hardware. 
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