
INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH

Abstract—This paper presents the implementation particle

swarm optimization (PSO) embedded in Arduino Nano for
proportional-integral-derivative controller (PID) tuning as a
validation for real-time hardware application on the photovoltaic
maximum power point tracking (MPPT) system. The Arduino is
interfaced to the MATLAB/Simulink via serial communication
device to provide duplex communication for PID tuning. The
performance of PID tuning using PSO in Arduino was compared
with the performance of MATLAB PID tuner toolbox based on
simulation result via Simulink. The embedded PSO-PID provides
better performance of 10 times higher compared to MATLAB
PID tuner.

Index Terms—PV, MPPT, PSO, PID, Arduino Nano.

I. INTRODUCTION
ROPORTIONAL-INTEGRAL-DERIVATIVE (PID) controller are
widely used in various industrial application for the
controls of machines, and instruments. According to [1],

the PID controller was first introduced in 1910. On some
occasion, either the proportional P, proportional-integral PI, or
proportional-derivative PD controllers is used instead of the
PID, which depending on the application, and design. The
controller is a mathematical based controller which is widely
used in closed-loop system. They can offer control scheme
such as reference input tracking, and disturbance rejection in
the system’s plant.

Application of PID controller in maximum power point
tracking (MPPT) for photovoltaic (PV) system is to control the
switching devices in the power converter. The absence of
controllers such as lag-lead compensator, PID controller, or
fuzzy logic controller in PV-MPPT system will causes the
power optimization process for solar generator become slow,
and prone to high steady-state error [2]–[6]. This will reduce
the overall efficiency of PV solar energy harvesting.

Shown in Fig. 1 is the block diagram the control system.

Submitted on 28th of February 2018 and accepted on 28th August 2019. The

author would like to thank Universiti Teknologi Mara Malaysia and Research
Management Institute for the financial support through Fundamental Research
Grant Scheme (FRGS/1/2016/TK10/UiTM/62/2) for this study.

Muhammad Iqbal Mohd Zakki is with Universiti Teknologi Mara Pulau
Pinang, Permatang Pauh, Jalan Permatang Pauh, 13500 Permatang Pauh,
Pulau Pinang, Malaysia (e-mail: muhammadiqbal.mohdzakki@live.com).

Dr. Mohd Najib Mohd Hussain is with Universiti Teknologi Mara Pulau
Pinang, Permatang Pauh, Jalan Permatang Pauh, 13500 Permatang Pauh,
Pulau Pinang, Malaysia.

The control plant of the system, G(S), includes PV module,
DC-DC converter, and resistive load. The control input R(s) of
the process loop is the voltage reference Vref fed by MPPT
controller, whereas the feedback signal H(s) is the
instantaneous voltage of PV module VPV. In this control
scheme, the input of the PID controller is the error between
Vref, and VPV.

There is numerous method of PID tuning. Some of them are
by using the Ziegler-Nichols’ (Z-N) technique, the Cohen-
Coon technique, and gain-phase margin technique [7].
Nevertheless, the PID controller can be also tuned using
computation intelligence (CI) techniques by either self-
adaptive fuzzy, or evolutionary computation (EC) [8].

Fig. 1. General block diagram for the closed-loop PV-MPPT system

The PID tuning method proposed in this paper is by using
the particle swarm optimization (PSO) algorithm [9] due to the
fact that this method independent from human expertise in
tuning process, while can be easily applied to different PV
system [10]. Furthermore, PSO algorithm is preferred for PID
optimization process instead other algorithms in evolutionary
algorithm (EA) family because the PSO have only three steps
in the algorithm [11]. Due to low requirement of memory
capacity for data processing, thus, PSO is more viable for the
implementation on low-cost real-time hardware.

II. PHOTOVOLTAIC MPPT SYSTEM
PV system is an electrical generation system that can be

built from integration of PV modules; that make-up from PV
cells. PV cells are made of semiconductor materials, with
similar working principles to other semiconductor devices
such as photo-transistor, photo-resistors, photo-detectors, and
others. As a result, PV cells also inherit the non-linear
electrical current-to-voltage (I-V) relationship that are rely on
the ambient environment such as the intensity of incidence
light (solar irradiance ψ), and the temperature of the solar cell
Tcell.

These two factors produces different I-V curve and their

Implementation of Particle Swarm Optimization
for tuning of PID controller in Arduino Nano for

Solar MPPT system
Muhammad Iqbal Mohd Zakki, Mohd Najib Mohd Hussain, and Nawawi Seroji

P

INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 13 DEC 2018

corresponding power-to-voltage (P-V) curve as shown in Fig.
2. A PV system that directly connected to the electrical load
will operate at non-optimum parameters because the operating
points of PV cells are impedance-dependent. Moreover, the
optimum operating parameters, or the maximum power point
(MPP) changes dynamically with insolation, and heat acts on
the solar cell. Hence, the PV system requires devices to
optimize the operating parameters to the MPP by employs
MPPT system.

Fig. 2. Operating environment effect on PV cell

Generally, MPPT system consist of intermediary power

converter, MPPT controller, and control loop as exemplified
in Fig. 3. The DC-DC chopper (buck-boost) is controlled by
PID controller, based on the command from MPPT. In this
case, the power converter is controlled by PID controller,
which receives inputs from MPPT reference voltage, Vref, and
instantaneous PV voltage, VPV.

Fig. 3. Detailed closed loop control of PV-MPPT system

The prime focus of this paper is to verify the feasibility of

PSO implementation into low-cost microcontroller hardware

for real-time application by comparing the performance of the
external hardware-embedded PSO-PID tuning with the
internal MATLAB PID tuner. Both tuning method are applied
on the PV-MPPT system model in the Simulink. The
performance of these tuning method are compared in terms of
accumulative mean error squared (MSE).

III. PID TUNING METHODS
It is worth to mention that Simulink is used as an intrinsic

control plant for performance analysis of the PID tuning as a
method to eliminate influence of external disturbances as
founded in the real hardware environment. This evaluation
approach is carried out so that the C++ coding of embedded
PSO-PID algorithm can be tested, debugged, and verified. On
the other hand, a fair comparison of performance with the
MATLAB PID tuner can be made via Simulink environment.

Shown in Fig. 4 is comprehensive Simulink blocks of PV
system comprise of PV module block model, MPPT, MPPT
control system, voltage and current sensors, and the buck-
boost converter. The system plant consist of PV panel, MPPT
controlled DC-DC converter, and load.

Fig. 4. Simulink PV-MPPT system

Fig. 5 shows the internal components of MPPT subsystem.

According to Fig. 5, the MPPT controller receives input
measurements of VPV, and IPV, while process the tracking
reference Vref as command input to the control loop. PID
controller receives error signal from the comparison of Vref and
VPV on the summing junction. The MPPT also controls the
input and output of PID controller via ‘Enable’ port.

Fig. 5. MPPT controller with PID closed-loop

Fig. 6 displays the MPPT inverted buck-boost DC-DC

chopper driven by the control loop as presented in Fig. 5.

Zakki et. al.: Implementation of Particle Swarm Optimization for tuning of PID controller in Arduino Nano for Solar MPPT system

Fig. 6. DC-DC buck-boost converter

A. Arduino PSO-PID Tuning
PSO-PID tuning via Arduino Nano hardware is carried out

by interconnecting the MATLAB/Simulink with Arduino
board by Serial-to USB communication as illustrated in Fig. 7.
The PSO-PID tuning algorithm was embedded into the
microcontroller to provide PID gain parameter, while the
MATLAB/Simulink accomplishes the simulation process to
obtain the fitness for each particles position.

Fig. 7. Block diagram illustration for Arduino PSO-PID tuning

1) The Particle Swarm Optimization (PSO)

The particle swarm optimization algorithm was introduced
in 1995 by Kennedy, and Eberhart [9]. The study presents a
simple algorithm derived from the social interaction concept
of birds’ flock that can be used to find solutions for wide
range of non-linear problems by using metaheuristics search
technique. Conceptually, it has the similarities with genetic
algorithm (GA) since it uses the notation of “fitness” like
other family members of evolutionary algorithm (EA) in
computation intelligence (CI) to represent the performance of
a solution from the population.

According to [11], PSO uses less effort in computation to
achieve the same high quality solutions compared to GA. The
study present that PSO is proven its advantage with 99%
statistical confidence. Therefore, the PSO was likely more
efficient to be employed into low-cost hardware systems for
online system application such as PV-MPPT system as this
study. For that reason, PSO was implemented as PID tuner in
this study.

Fundamentally, PSO algorithm searches the optimum
parameters by iteratively updates the particles’ velocity and
position until the fitness, and objective of the optimization are
met.

According to Fig. 8, after the initialization, the algorithm
waits for iterative fitness computation from individual particle
position. Subsequently, the current best particle position pbest
is defined by determine the lowest MSE in the swarm fitness.

Fig. 8. PSO-PID algorithm flowchart

After the fitness of all particle in the population have been

testified individually, the current best fitness f(pbest) of the
swarm is compared to the global best fitness f(gbest). The
fitness functions for each particle were evaluated as mean
error squared, MSE of input voltage reference, Vref and the
actual instantaneous voltage, VPV. The fitness function for PSO
is shown in (1).

∑
=

−=
T

i
PVref

k
i tVtV

T
sf

1

2))()((1)((1)

where)(k
isf is the fitness of the current particle, and T is the

total simulation data point.
The comparison to determine the pbest, and gbest depends on

the “objective function” of the optimization process. In the
case of PID tuning, it is necessary for the control system to
have the lowest error as possible, thus, the resultant “objective
function” is to determine pbest, and gbest of the lowest MSE as
shown in Fig. 8.

INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 13 DEC 2018

Essentially, the PSO uses equation (2) and (3) as the
respective velocity and position update function for its particle
movement. The influence of the swarm and the global optima
position on the particle’s position is illustrated as in Fig. 9.

1

1 1 2 2() ()k k k k
i i best i best iv wv c r p s c r g s+ = + − + − (2)

11 ++ += k
i

k
i

k
i vss (3)

where,
k is the kth iteration;
i is the particle number of a given swarm;

1r and 2r is random number as learning factor for individual
particle to prevent entrapment of particles in local optima

k
iv is the current particle velocity;
k
is is the current particle position;

w is the swarm weight, or inertia factor;
c1, and c2 are the particles, and swarm confidence factor;
pbest is particle position with the best fitness in the swarm, or
iteration;
gbest is the global best particle position.

Fig. 9. Movement of particle under swarm influence

2) Hardware Implementations

The PSO-PID tuning was carried out using hardware as
shown in Fig. 10. This tuning procedure employs master/slave
programming; hardware embedded program (master), and
MATLAB m-file (slave). The PSO-PID tuning program is
embedded in microcontroller, while the m-file program in
MATLAB is used to parse parameters between hardware, and
Simulink, back and forth. The device for hardware-to-software
interfacing is shown in Fig. 11.

Fig. 10. Hardware for PSO-PID tuning on Simulink model

Fig. 11. USB-Serial FTDI FT232RL communication chip breakout board.

Fig. 12 shows the program flowchart for PSO-PID tuning

via hardware-to-MATLAB interface. In the beginning, the
PSO parameters initialize in the hardware memory, and wait
for MATLAB slave acknowledgement before begin
transmitting the PID parameter. The PID gains from the
Arduino will be parsed to Simulink. Subsequently, the MSE
fitness data from the simulation run will be sent back to the
master hardware. The optimization process carried out by the
master device iteratively until the fitness of the population
converges.

Fig. 12. Flowchart of embedded PSO-PID program (master)

Shown in Fig. 13 is the output verbose of the code

compiling for PSO-PID MATLAB tuner embedded on
Arduino Nano. The memory consumption for the program and
variables are 47% of 30720 byte, and 55% of 2048 byte,
respectively.

Zakki et. al.: Implementation of Particle Swarm Optimization for tuning of PID controller in Arduino Nano for Solar MPPT system

Fig. 13. PSO-PID MATLAB tuner code compilation output verbose

Fig. 14 and Fig. 15 shows snippet of PSO-PID coding for

velocity, and position update function.

Fig. 14. PSO velocity update function

Fig. 15. PSO position update function

The Fig. 16 shows the running process of PSO-PID tuning

in the MATLAB command window, while Fig. 17 shows the
simulation run to find the particle fitness. The fitness of the
particle is determined by the mean sum of squared error
between the reference signal Vref and the instantaneous PV
voltage, VPV.

Fig. 16. PSO-PID tuning process in MATLAB command window

Fig. 17. Simulation runs for PSO-PID tuning

The iteration of the PSO stopped after the fitness between

particles in the swarm converges with the standard deviation
lower than 0.1. The optimized PID parameters were returned
by the gbest position as follows;

• Proportional gain, Kp = 6.4391
• Integral gain, Ki = 9.9361
• Derivative gain, Kd = 8.6265
• Derivative filter, N = 100

B. MATLAB PID Tuner Toolbox
Since the PV system consist of non-linear system response

due to the PV module, and non-linear switching response of
the power converters, the plant of the system must be
linearized by simplify the plant with mathematical modelling
via system identification process.

As shown in Fig. 18, the process initiates from input-output
(I/O) response data sampling. Subsequently, the plant is
estimated and the fitness of the model output is compared with
the sampled data. If the fitness of the model is less than 80%
of the I/O sample, the plant will be re-modelled with new
structure. Otherwise, the linearized model will be applied into
PID tuner toolbox for tuning. Nonetheless, this linearized
model only used in the PID tuner toolbox to simplify the non-
linearity of the system plant.

The performance of the newly acquired PID parameters will
be tested with the simulation blocks as demonstrated in Fig. 4,
by replacing the MPPT with a step input, purposely to
compare with the performance PSO tuned PID controller.

INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 13 DEC 2018

Fig. 18. Process flows for PID tuning using MATLAB PID tuner toolbox

1) Input-Output Sampling

To begin with, the I/O data of the system was sampled by
repeatedly inject the step input directly into the input of the
PID controller, while bypassing the input from MPPT and the
feedback loop. Thus, the control system operates as open-loop
control. The PID controller is set to P-only mode with
proportional gain, Kp = 1 for linear modelling purpose.

Fig. 19 shows present I/O sampling result using step input
with rise time at 0.0005s, until 0.01s. The sample time Ts for
I/O data sample is 1x10-6s per iteration.

Fig. 19. I/O response data sampling for plant identification

2) Plant Identification
After the data sample is obtained, the model is then

estimated via system identification approach by using
structures by either of one-pole, two real-poles, underdamped
pair, and underdamped with real-pole transfer function, and
state-space. All of the mentioned structures are tested while
their fitness was compared to each other. In conclusion,
underdamped pair have the highest fitness value besides
having the simpler form of equation compared to state-space.
Exhibited in Fig. 20 is the linear plant modelling using
underdamped pair transfer function. The angular frequency,
Tω, and damping ratio, ζ are manually adjusted so that the
identified data intersect as close as possible on the
identification data obtained from the I/O sampling.

Fig. 20. Linear model plant estimation

The identified model is further fined-tuned by using the

auto estimate function of the toolbox in order to achieved
fitness of 87.37% as exemplified in Fig. 21.

Zakki et. al.: Implementation of Particle Swarm Optimization for tuning of PID controller in Arduino Nano for Solar MPPT system

Fig. 21. Plant identification for linear model

The yield of the modelling process for the underdamped

pair transfer function (4) as below;

12
)(

22 ++
=

sTsT
KsG

ωω ζ
 (4)

where the value of gain, K, angular frequency, Tω, and
damping ratio, ζ are 21.551, 0.00021141, and 0.255
respectively. Thus, the transfer function for linear model is
simplified as in (5).

100010782.0940000000446.0
551.21)(2 ++

=
ss

sG (5)

3) PID Tuning

Fig. 22 and Fig. 23 are the PID tuner window, and PID
controller specifications, correspondingly. The tuner can
simply be used by adjust the control slider for the response
time, and the transient behaviours. It is desirable that the
controller to be able to provide the response time, oscillations,
and errors as minimal as possible. From the tuned parameters,
the achieved rise time is 0.00002s, with 0% overshoot.

Fig. 22. MATLAB PID tuner tool

Fig. 23. MATLAB PID parameter and performance

It is worth noting that, the PID tuning by the toolbox uses

the linearized plant model, therefore, the performance might
be different when the tuned PID parameter applied into the
non-linear PV system.

IV. PERFORMANCE COMPARISON
By utilizing both methods to obtain PID gain parameters,

the performance of the controller is evaluated in simulation
stage from Simulink block as shown in the Fig. 4. The system
block is injected with unit step input with amplitude of 15V
reference voltage, Vref. The parameters for both tuning method
are assessed in Table 1. Fig. 24 and Fig. 25 show the step
response of closed loop PID control response using MATLAB
PID tuner toolbox, and Arduino PSO-PID tuning, respectively.

TABLE I

SIMULATION PARAMETERS OF PID TUNING METHOD

PID tuning method MATLAB PID Tuner
Toolbox

Arduino PSO-PID
Tuner

Proportional gain, Kp 9.5594 6.4391
Integral gain, Ki 6039.1658 9.9361
Derivative gain, Kd 0.003621 8.6265
Derivative filter, N 12375568.5142 100
Settling time (seconds) 0.003501 0.000203
Mean squared error,
MSE 1.009891 0.1025

Fig. 24. Step response of closed loop PID control by MATLAB PID Tuner

INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 13 DEC 2018

Fig. 25. Step response of closed loop PID control by PSO-PID tuning

From the step response test, it is observed that PSO-PID

method has the fastest response time compared to the
MATLAB-tuned controller. The PSO-PID method achieves
steady-state at t = 0.703ms. Thus, the time taken for the plant
output to settle to step input tss is 0.203ms (note that unit step
rise time tr = 0.5ms). In contrast, MATLAB-tuned PID takes
time to settle for 3.501ms. The recorded MSE for MATLAB-
tuned PID is 1.009891. While for PSO-PID method, MSE
successively reduced to 0.1025.

Since the embedded PSO-PID tuning only takes about one-
tenth of the response time of MATLAB-tuner method,
therefore, the PSO-PID shows its advantage over the
counterpart.

V. CONCLUSION
From the following results, the PSO-PID algorithm

embedded in the 8–bit microcontroller proves its feasibility,
and effectiveness by successfully optimize the PID controller
by provide about 10 times improvement compared to
MATLAB PID tuner in terms of MSE, and response time.
Moreover, PSO-PID requires less step in tuning procedure
since it does not require collection of data for off-line system
identification. Besides that, the tuning process is also reliable
and independent from human supervision. Therefore, the PSO-
PID can be identified as an adaptive tuning method that can
directly embedded to the real PV-MPPT hardware of any
setup. Furthermore, the proposed PSO-PID tuning method
consumes low capacity of flash memory, and processing
power. Hence, PSO is viable for the implementation in low-
cost microcontroller hardware.

VI. REFERENCES
[1] M. Amirinejad, M. Eslami, and A. Noori, “Automatic PID

Controller Parameter Tuning Using Bees Algorithm,” vol. 5, no. 8,
pp. 24–28, 2014.

[2] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power
electronics and control techniques for maximum energy harvesting
in photovoltaic systems. 2013.

[3] M. H. (Muhammad H. Rashid, Power electronics handbook :
devices, circuits, and applications. Butterworth-Heinemann, 2011.

[4] Y. Wang, L. Ding, and N. Li, “The application of fuzzy parameters
self-tuning PID controller in MPPT of photovoltaic power system,”
Proc. 2011 Int. Conf. Transp. Mech. Electr. Eng. TMEE 2011, no.
Figure 2, pp. 1129–1132, 2011.

[5] A. El Khateb, N. A. Rahim, and J. Selvaraj, “Optimized PID
controller for both single phase inverter and MPPT SEPIC DC/DC
converter of PV module,” 2011 IEEE Int. Electr. Mach. Drives
Conf. IEMDC 2011, pp. 1036–1041, 2011.

[6] R. Pradhan and B. Subudhi, “Design and real-time implementation
of a new auto-tuned adaptive MPPT control for a photovoltaic
system,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 792–803,
2015.

[7] A. Bagis, “Determination of the PID controller parameters by
modified genetic algorithm for improved performance,” J. Inf. Sci.
Eng., vol. 23, no. 5, pp. 1469–1480, 2007.

[8] A. A. R. Coelho, “PID techniques in intelligent and adaptive
algorithms,” in 38th Midwest Symposium on Circuits and Systems.
Proceedings, 1996, vol. 1, pp. 409–412.

[9] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” pp.
1942–1948, 1995.

[10] G. Reynoso-Meza, J. Sanchis, J. M. Herrero, and C. Ramos,
“Evolutionary auto-tuning algorithm for PID controllers,” IFAC
Proc. Vol., vol. 2, no. PART 1, pp. 631–636, 2012.

[11] R. Hassan and B. Cohanim, “A comparison of particle swarm
optimization and the genetic algorithm,” 1st AIAA Multidiscip. Des.
Optim. Spec. Conf., pp. 1–13, 2005.

Muhammad Iqbal, Mohd Zakki received Diploma
in Electrical Engineering (Power) from Universiti
Teknologi Mara Pulau Pinang, in 2012, and B.Sc in
Engineering (Electrical and Electronics) from the
same university, in 2017. He is currently pursuing
the M.Sc in Electrical Engineering by research in the
field of renewable energy, specifically in
optimization of solar photovoltaics system. His
research interest include development of PV-MPPT

system, embedded electronics, power electronics and energy conversion,
artificial intelligence, and system modelling.
Currently, he works as research assistant in the university. In 2015, he used to
work as an intern at Sungai Petani Town Municipal Council (Majlis
Perbandaran Sungai Petani Kedah, MPSPK) in Engineering Department.
Mr. Muhammad Iqbal is a graduate member of Board of Engineers Malaysia
(BEM), and the Institutions of Engineers Malaysia (IEM).

	I. INTRODUCTION
	II. Photovoltaic MPPT System
	III. PID Tuning Methods
	A. Arduino PSO-PID Tuning
	1) The Particle Swarm Optimization (PSO)
	2) Hardware Implementations

	B. MATLAB PID Tuner Toolbox
	1) Input-Output Sampling
	2) Plant Identification
	3) PID Tuning

	IV. Performance Comparison
	V. Conclusion
	VI. References

