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Abstract—This paper presents Disaster Management System 

Based on Levenberg-Marquardt Algorithm Artificial Neural 

Network. Although Malaysia is located outside the “Pacific Rim 

of Fire” and protected from severe ravages caused by natural 

disasters, however, Malaysia do still experience other disasters. 

In Malaysia, the disaster management is laid out under 

integrated system called the Malaysia National Security Council 

Directive No. 20 (MNSC No. 20). Unfortunately, the policy 

introduced in the year 1997 is not enough to help the responders 

managing disasters efficiently.  Study shows, a computerized 

system was identified as one of the best tools in supporting the 

responders in Malaysia especially the lead responding agency to 

manage disasters. Thus, the Disaster Management System Based 

on Levenberg-Marquardt Algorithm Artificial Neural Network 

was developed with the aim to help and assisting responders 

(FRDM first responders) in Malaysia to manage disaster 

particularly during early stage of response phase. The objective 

of this paper is to analyse the system in terms of accuracy of 

system (MLP model). Mean Square Error (MSE) value was used 

to identify the suitable model for the ANN system. The analysis of 

the results shows that the best model of ANN is at 15 neurons 

with the MSE of 0.0159 which will be discussed thoroughly in this 

paper. 

Index Terms— MNSC No. 20, FRDM, ANNt, MSE and 

Levenberg-Marquardt. 

I. INTRODUCTION 

ISASTER management is defined as systematic 

process of using operational skills, 
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administrative decisions, organization, and 

capacities to implement policies and strategies of 

the local communities in minimizing the negative 

impact of disasters [1]. The Red Cross and Red 

Crescent Societies define the disaster management 

process as the management of responsibilities, 

resources and supplies for dealing with all 

humanitarian aspects of emergencies and disasters 

including preparedness, response and recovery to 

lessen the effect of disasters [2]. The disaster 

management comprise the process of preventing 

tremendous losses from disasters (including assets 

and human lives), preparing and response during 

disasters as well as recovery from disaster [1] [2].  

Until early 1990's, Malaysia has no specific 

disaster management system [3]. The revolution of 

disaster management in the countrry came after the 

tragedy of the Bright Sparkles explosion and the 

collapsed of Luxury Highland Towers in the year 

1991 and 1993 respectively [4][3]. Consequently, 

these major disasters have caused devastation 

impact to the Malaysian society and left 

unspeakable traumatic impressions on Malaysian 

people. Following these disasters, on May 11, 1997,  

the country developed its first disaster management 

policy which acts as a framework containing 

activities that relate to disasters and relief 

management in Malaysia known as the Malaysia 

National Security Council Directive No.20 (MNSC 

No.20): Policy and Mechanism on National Disaster 

and Relief Management [5][6].  

The policy is not only focused on a specific type 

of disasters. However, it is applicable to all types of 

disasters which includes natural, man-made as well 

as hybrid disasters. MNSC No.20 outline a policy 

on disaster management and has set the 
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responsibilities and the role of the agencies 

involved at the time needed in dealing with 

disasters. In March 2012, the revised version of the 

policy were introduced in order to comply to the 

international framework and conform with the 

current changes and complexity of disasters [7][3]. 

The directives have shaped the environment of the 

disaster management in Malaysia and was referred 

by many studies in disaster management [3].  

Unfortunately, the policy (MNSC N0. 20) alone 

is not sufficient to support the local authorities, 

particularly the responding agency in Malaysia to 

combat disaster [8]. In the event of mega-scale 

disasters, it will be a huge challenge to the local 

authorities having jurisdiction in managing disasters 

themselves [9]. Studies reveals, a computerized 

system was identified as one of the best tools to 

support the lead responding agency in Malaysia in 

managing disasters efficiently and effectively 

[4][3].  

Thus, researchers came with a solution by 

introducing a computerized system. The system is 

known as “Disaster Management System Based on 

Levenberg-Marquardt Algorithm Artificial Neural 

Network”. A computerized system is referred as a 

computer software or a program that have a 

capability to draws upon the knowledge of human 

captured in a knowledgeable base to solve tasks or 

any problems that normally require human or 

expertise to solve [10]. Basically, the system 

provides solution to store human knowledge and 

expertise (including experiences) in computers. 

Some of the computerized system are specifically 

designed to replace human or experts, while others 

are designed with the objective to aid them [11], 

[12]. 

In this research, researchers focusing on 

designing an assisting system (aiding system) for 

lead responding agency in Malaysia (FRDM first 

responders) in managing disaster during early stage 

of response phase. Response phase is one of the 

critical phase in disaster management cycle in 

Malaysia [12]. One of the challenges faced by 

responders during disaster (response phase) is to 

make an effective and accurate decision within a 

limited time. The timeliness and accurate decision 

made by the responders shapes the effectiveness of 

emergency response efforts [21]. During response 

phase, usually FRDM experts will be the one who is 

responsible in making the decisions [11]. Effective 

and accurate decisions made by experts such as 

determining the level of disaster and type of 

resources needed is based on years of experience 

[11]. The problem is that, human expertise not 

always available at the disaster location to lead and 

assist responders. This leads to difficulty in finding 

domain expert with relevant knowledge and 

experience to manage the disaster [22] especially 

during initial respond. These difficulties identified, 

may lead to a longer time taken during decision-

making process that is supposed to be done in a 

short time frame due to the absence of expertise 

[11]. Due to this, a computerized system with a 

capability to propose an appropriate type of fire 

engines and its number, manpower needed as well 

as the level of disaster is demanded.  

 It is the objective of this paper to analyse th. 

optimum ANN model for the computerized system 

used in this research. 

II. ARTIFICIAL NEURAL NETWORK (ANN) 

An artificial neural network is a computational 

learning machine (model) based on the structure of 

biological neural networks for example  the human 

brain and neurons; whereas the information or data 

are the processing paradigm [13][14]. The ANN has 

a mental capability which includes the skill to plan 

and it also can think abstractly. In addition to that, 

the ANN as well can be used as a problem-solving 

tool and act as alternative modelling technique to 

non-physical and physical systems with 

mathematical or even scientific basis. The main 

characteristics of ANN are that they have the 

capability to learn complex nonlinear input-output 

relationships, can simply adapt themselves to the 

information or data given and lastly it use a 

sequential training procedures [15].  

Additional, ANN can learn swiftly from any 

given data or experience through a process, known 

as the training process. ANN can be trained to 

perform optimization [16]. The information inserted 

in ANN is trained to learn characteristic or 

behaviour to ensure the system is capable in 

recognizing the input data and can react to it (give 

output). Learning process is just like a starting point 

to gain knowledge, in order to success or failure 

[13]. 
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III. MULTILAYER PERCEPTRON (MLP) 

Multilayer perceptron is also known as MLP. It is 

a unique subset of ANN that has been broadly used 

in modelling ANN especially when dealing with 

complex problems. The MLP is a system consisting 

of vastly distributed parallel processors which 

comprise of simple processing units known as 

neurons. It exhibits the natural tendency for storing 

as well as utilizing experiential knowledge [13]. 

The MLP comprise of three (3) or in certain cases 

more than three (3) layers which can be used in 

solving a complex nonlinear problem.  

The units in functional MLP are organised in 

interconnected layers which comprise of an input 

layer, an output layer and lastly the hidden layer(s) 

(one (1) or more layer) in between the input and 

output layer. Among those three (3) layers, the 

hidden layers are the most important and crucial 

layers due to the reason that, they hold the 

responsibility in extracting underlying patterns from 

the inputs and enable the MLP to learn complex 

task or assignment from the inputs, hence producing 

the desired outputs [17]. The numbers for both input 

and output units are fixed, since they depend on the 

input and the desired output(s). However, the 

number of hidden layers and its units are adjustable. 

They are problem-specific, besides, can be tuned to 

ensure the performance of MLP is maximizes. A 

more complicated problems sometimes might 

require more than one (1) hidden layers as well as 

the hidden units [18]. 

IV. NGUYEN-WIDROW ALGORITHM (NW) 

The interconnections between the layers of MLP 

and its weights are randomly adjusted (initialized) 

prior to training process. A too small or too large 

initial weight values of MLP may slowing down the 

process of ANN’s convergence or even in the worst 

case, preventing the ANN itself from converging 

[19]. To avoid this problem from happening, the 

NW algorithm were utilized in the MLP model. It 

can be used to generate the initial weight values 

(bias values) for a hidden layer(s) in the ANN. This 

is to ensure the active regions of the hidden layer's 

units will be spread and distributed approximately 

evenly over the input space or area [20]. These 

weights values only need minor adjustments during 

training process, consequently greatly speeding up 

the training process of MLP [16]. 

V. EARLY STOPPING 

When training neural networks (MLP), there are 

several decisions must be made. Especially 

regarding the parameter used in order to obtain a 

good MLP performance. For instance, the number 

of training epochs (number of full passes) of the 

data set should be used during MLP training [21]. A 

common problem arising during this process 

(training process) is over-generalization [22][23]. 

Over-generalization can be express as a situation or 

state where the MLP has been trained until it has 

memorized the data given (input) instead of 

learning. Due to this, the MLP is incapable to adapt 

and generalise when encounter new cases [16]. 

Hence, in order to prevent the problem from 

occurring (over-generalization), the Early Stopping 

(ES) method is implemented in this research. 

Additional this method obtain an optimum 

generalization. Generally, the ES method divides 

the dataset into three (3) different sets which are 

training, testing and validation set [16]. 

The used of training set is to ensure the MLP 

weights is updated throughout training process. 

Under this stage, the validation set will be used to 

monitor an error. Characteristically, during training, 

the validation set does not participated in updating 

the MLP weights. Therefore, the set can be used as 

a performance device in measuring the MLP 

generalization capabilities. This can be done when it 

encounters new cases (untrained cases) [15]. 

 Over-generalization occurred when the error in 

the training dataset (training error) continues to fall, 

however the error in validation dataset (validation 

error) has started to climb. This situation indicates 

that over-generalization has occurred. Hence the 

training process will be stopped [24].  

The ES method is simple to implement and 

understand. Moreover, in various cases, this method 

also has been proved to be a better method 

compared to regularization method and it is as well 

can avoid the network from overfitting the data. 

Due to this reason it has been a popular method and 

broadly used by researchers and academician. [14]. 
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VI. LEVENBERG MARQUARDT ALGORITHM (LMA) 

MLP used a various of learning methods. 

Levenberg-Marquardt Algorithm (LMA) is one of 

the learning methods that is widely used especially 

when dealing with ANN modelling [5]. The LMA 

training method has been chosen in this research. 

Basically, the LMA is a standard algorithm used in 

optimizing MLP model and can be used in solving 

complex non-linear problems [25]. 

 The LMA is a popular method and broadly used 

in many software applications. It is capable of 

locating a local minimum of a numerous function 

which includes real-valued functions as well as sum 

of squares of several non- linear function by using 

an iterative techniques [18]. In addition to that, this 

method act as a combination of two (2) training 

method which are the Gauss-Newton iteration 

method (GN) and Vanilla Gradient Descent method 

(VGD).  

The LMA will behave as VGD when it detect the 

local minimum is far from the current solution. The 

process is slower. However, this method is 

definitely to converge. The LMA will behave as the 

GN method when it detect the local minimum is 

close to the current solution. In this situation, the 

GN method will exhibits a fast convergence [18].  

In simple terms, the mechanism of LMA 

technique is that it ensures the performance function 

of MLP will always being reduced for every 

iteration. Due to this reason, the LMA has become 

the fastest training algorithm for MLP with 

moderate size network.  

Unfortunately, LMA function has several 

weaknesses of memory and computation overhead 

caused. These problems arise due to the calculation 

of the gradient and approximated Hessian matrix 

[14][26]. Though the LMA method spends large 

memory, but it converges in fewer number of 

iterations and consumes a less time frame. In many 

cases, LMA is able to generate and produce a better 

result with high accuracy (lower MSE) compare to 

any of other algorithms. It is as well has been 

proved to have a slightly better advantage in terms 

of training speed (training iterations) [16].  

VII. METHODS 

• Collecting Data (Past Disaster Record) 

Fire and Rescue Department of Malaysia 

(FRDM) was chosen as research partner in this 

project due to their roles as lead responding agency 

as well as their direct involvement and contribution 

in Malaysia disaster management [3]. Hence, for 

this research, the source of information regarding 

the disaster is mainly came from FRDM including 

their past disaster records (printed and online data) 

as well as their procedures used in managing 

disaster. The data collected is on one (1) type of 

disaster which is fire only. An online database 

system called the ‘Sistem Pelaporan Insiden (SPI)’ 

from FRDM was used to collect past disaster 

records. Then, the data being tabulate in a table 

form consist of ten (10) parameters including six (6) 

input and four (4) output. These data will be used to 

develop the disaster management system. The 

parameters are listed as below: 

 
Table 1: List of Input and Ouput Parameters Used in Developing System 

Input Output 

Type of fire (Chemical / Non-

Chemical) 

Emergency Medical Rescue Services, 

EMRS (Number of Fire Engines)  

Area involve (m2) Fire Rescue Tender (Number of Fire 
Engines) 

Height involve (m) Hazardous Materials Team, 

HAZMAT (Number of Units) 

Percentage of Losses (%) Turntable Ladder (Number of Fire 
Engines) 

Number of injury  

Number of death  

 

A total of 1379 dataset has been collected. Prior 

to the training, the dataset was rescaled to between -

1 and 1 before being split into 70:15:15 (training: 

validation: testing) ratio. 

 
•  Selecting MLP Layer and Number of Neurons 

A fully-connected MLP structure consist of one 

(1) input layer, one (1) hidden layer and one (1) 

output layer  was used. The number of hidden 

neurons is set up as follows: 

 
Table 2: MLP Structure Used 

Network MLP 

Structure 

1 6:5:4 

2 6:10:4 

3 6:15:4 

4 6:20:4 

5 6:25:4 
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The parameters shown in Table 1 and Table 2 

were used for LMA training, respectively.  

 
• Train MLP 

During this process, the input-output relationships 

are mapped by altering the interconnected weights. 

The process is supervised [19], whereas the MLP 

network being provided with a sample data (data is 

presented in input-output pairs). Then, the 

network’s output will be compared with the 

expected responses [27]. Training process continues 

and repeated until the MLP is able to produce the 

expected response [27]. 

 
• Measure the Performance of MLP  

The performance of MLP is measured through the 

Mean Squared Error value (MSE). After the training 

process is complete, the value of MSE is monitored. 

The model with the lowest MSE is selected as the 

optimum model for this project. 

VIII. RESULTS 

The optimum MLP model was successfully 

achieved. Based on Figure 1 below, all the MSE 

value obtained is less than 0.1. The optimum model 

of MLP is achived at 15 neurons. This is due to the 

reason that, at neurons 15 the MSE yield the lowest 

value which is 0.0159. The highest value is at 5 

neurons which show that the MSE is equal to 

0.0178. This implies that the model did not learnt 

properly since the number of neurons is not enough 

to fit the model. 

 

 
Figure 1: MSE VS Number of Hidden Units 

 

 
Figure 2: Number of Iterations VS Number of Hidden Units 

 

Based on Figure 2 above, all training runs stopped 

prematurely when it detected that the MLP model is 

over fitting the training data. The highest iterations 

is at neurons 5 which shows 27 iterations. The 

lowest iterations is 21 at 15 neurons (optimum 

model). The average iterations obtained from the 

graph (Figure 2) is around 22 to 24 iterations. 

Figure 3 below show the performance plot of 

MSE for training set (blue line), validation set 

(green line) and testing set (red line) of the optimum 

model of MLP (15 neurons). 

 

 
Figure 3: Performance Plot of MSE 

 

The graph shows that MSE performance is 

abruptly decrease during training process starting 

from 0 until 5 iterations. The maximum decrease in 

MSE generally occurred in the first 15-21 iterations. 

This is due to the reason that, most weight changes 

occurred during this initial period, which 

contributed to the dramatically reduction of MSE. 

Later iterations showed little decrease in MSE 

(performance gradient is almost equal to zero (0)) as 

the weight values were refined indicate that the 

learning process is almost done.  

 As can be seen from the graph above, the 

training process stopped prematurely due to the 

Early Stopping (ES). The ES method stopped MLP 
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training process when it noticed the MLP was 

starting to over-fit the training data. The training 

stopped when the validation error increased for six 

(6) iterations (occurred at iteration 27). The best 

validation performance occurs at iterations 21 with 

MSE value of 0.0159 (lowest value). A smaller 

MSE value signifies that the residuals are small, 

meaning to say that the MLP model had 

successfully trained and fitted the data well.  

IX. CONCLUSION 

 Based on the results obtained, it can be conclude 

that, the Disaster Management System Based on 

Levenberg Marquardt Algorithm Artificial Neural 

Network is successfully developed. For this 

research, the best model (optimum model) of MLP 

is at iteration 21 with 15 neurons. Since at this 

iteration, the MSE yield the lowest value (0.0159) 

which indicate that the model did learnt properly 

during training process and capable of giving the 

accurate response (output). Therefore, the MLP 

model will be used in the computerized system. 
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