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 Abstract— The ability of an individual to control 

his EEG through imaginary motor tasks enables 

him to control devices through a brain machine 

interface [BMI].  BMI provides a direct link 

between the human brain and devices such as 

wheelchair and hand prosthesis bypassing the 

biological channels (peripheral nerves) for control. 

BMI are essentially designed to provide mobility to 

people with severe motor disabilities.  This paper 

presents a four-state BMI design for controlling a 

power wheelchair. Electroencephalogram [EEG] 

signals acquired during motor imagery for left and 

right hand movements are used to classify the four 

controls.  The BMI is designed using a Functional 

Link Neural Classifier [FLNN]. The performance of 

the four-state BMI is tested with three feature sets. 

From the results it is observed that the performance 

of the BMI is better for the FLNN model using 

MEIG features with an average efficiency of 93%.  

 

I. INTRODUCTION 

EG phenomena such as slow cortical 

potentials, P300 potentials, motor imagery, 

mu and beta rhythm control can provide 

rehabilitation for the severely disabled individuals 

to interact and communicate with their 

environment [1]. Motor imagery is the most 

common methodology employed by majority BMI 

researchers [1-5]. This can be attributed primarily 

to the purely cognitive nature of these methods as 

opposed to the requirement of stimulus in the 

P300 and evoked EEG- potential methods.  
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Motor imagery can modify the neuronal activity 

in the primary sensorimotor areas in a very 

similar way as observable with real executive 

movements [2]. Sensory stimulation, motor 

behavior and mental imagery can change the 

functional connectivity within the cortex and 

results in amplitude suppression or event related 

desynchronization. With proper training and 

motivation, majority of the subjects can learn to 

control the intensities of specific frequency bands, 

which can be used as a control signal [3].  

Pfurtscheller et al [4] have compared an adaptive 

autoregressive  model (ARR)  and  neural  

network model to show an improvement in the 

error rate using ARR.  Pfurtscheller and Neuper 

[2] present an ARR and Linear Discrimination 

approach to classify EEG signals for left and right 

movement from electrode positions C3, C4 and 

Cz, collected from a tetraplegic patient to control 

a hand. 

The processing of the EEG within the motor 

imagery still shows open directions; most studies 

have relied on subjective evaluation and not 

objective confirmation of task performance. Motor 

imagery is a dynamic state in which a subject 

mentally simulates a given action [3]. In our 

earlier work [6] we observed that the performance 

of neural classifiers were comparatively better 

than fuzzy classifier for BMI design. In this work 

we propose a new algorithm using a FLNN 

classifier to classify the four-states of the BMI for 

a wheelchair control. Data recorded from two 

subjects involving motor imagery of hand 

movements is analyzed in this study.  
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II. METHODS 

A. Experimental Paradigm 

Motor imagery signals are recorded using a 

synchronous protocol, from 2 voluntary subjects. 

The subject is seated on a comfortable chair in 

front of a computer monitor. The room used for 

the experiments does not have any special 

acoustic control. During the recording the subject 

is instructed not to move and to keep his hands 

relaxed. The MI tasks are cued by a visual 

stimulus presented on the monitor.  The subject 

performs four MI tasks namely, relax, forward, 

left and right;  the relax task is the baseline 

measurement task; for forward, left and right 

tasks an arrow appears on the monitor. Data are 

collected for two sessions, each session has five 

trials per task, and each task data is recorded for 

10s. The protocols for the four MI tasks are 

detailed below: 

Task 1 – Relax 

The subjects are asked not to perform any specific 

task, but to relax as much as possible and think of 

nothing in particular. This task is considered as 

the baseline task and used as a stop control for the 

wheelchair. 

Task 2 – Forward  

The subject is requested to fixate on the monitor 

showing an ‘up arrow’, the subject is requested to 

imagine moving both arms in a forward direction 

and the subject is requested to hold the thought for 

ten seconds.  

Task 3 – Left: The subjects are requested to fixate 

on the monitor showing a left arrow, the subject is 

requested to imagine moving their left hand in the 

direction of the arrow and the subject is requested 

to hold the thought for ten seconds.  

Task 4 – Right: The subjects are requested to 

fixate on the monitor showing a right arrow, the 

subject is requested to imagine moving their right 

hand in the direction of the arrow, and the subject 

is requested to hold the thought for ten seconds.  

 

B.  EEG Recording 

EEG is recorded using and AD Instruments 

amplifier, two gold plated cup noninvasive 

electrodes are placed at the C3 and C4 locations 

on the sensorimotor cortex area and the earth 

electrode is placed at the Fp1 location as per the 

International 10-20 Electrode Placement System 

[8]. Figure 1 shows the electrode placement 

locations. A digital band pass filter (0.5 Hz to 100 

Hz) is applied to the raw signal. The EEG signals 

are amplified and sampled at 200 Hz. The 

experiment consists of twenty trials per task. Each 

trial lasts for 10 seconds.  The subjects take breaks 

for 15 minutes between trials. All trials for a 

single subject were conducted on the same day.  2 

healthy subjects aged 16 and 46 participated in 

the study, at the time of data recording the 

subjects are free from illness or medication. 80 

signals are collected from C3 and C4 electrodes 

for the four motor imagery tasks from each 

subject. For this experiment artifacts such as eye 

blinks are not removed   

 

  

 

 

 

 

 

 

 

Fig. 1.  Electrode positions for data collection 

 

C. Feature Extraction  

To train and test the classifier a feature set is 

required to characterize the EEG. The EEG motor 

imagery is characterized using three methods; the 

first two methods uses the EEG time signals to 

determine the features, while the second method 

uses the frequency content of the signals for 

classification. Some of the common feature 

extraction techniques are autoregressive models 

(AR), spectral density estimation, independent 

component analysis and principal component 

analysis (PCA). 

Pfurtscheller et al [4] have used fixed 

autoregressive and adaptive autoregressive models 

43 



INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.5  JUNE 2012 

 

 

 

 

 

to extract features from EEG data. Other 

researchers have used Common Spatial Patterns 

and PCA on left and right motor EEG imagery to 

extract features [5]. Time frequency analysis and 

spatial patterns of the EEG signals are used as 

feature descriptors by Wang et al [7]. PCA based 

methods are proposed in [6] which are used to 

dimensionally reduce the original data to first n 

features. For this experiment artifacts such as eye 

blinks were not removed.  A novel feature 

extraction algorithm based on modified Eigen 

vector approach is proposed, the FLNN is also 

tested with parseval features and the conventional 

band power features.  

The EEG trials are portioned into 0.5s 

windows, with an overlap of 0.25s. The first 

method uses the modified Eigen vector features 

(MEIG) of window segments of the EEG motor 

imagery to extract the features. The feature 

extraction algorithm uses the following procedure: 

.1.  S = sample data for 10 seconds 

 2. Apply band pass filtering 0.5 Hz to 100 Hz  

3.  S is partitioned into 0.5 seconds windows   

with overlap 0.25s  

4. E = segmented signal multiplied with its 

transpose  

5. Extract Eigen vector of E;  

6.  Repeat 1 to 5 for each trial. 39 features are 

extracted from the EEG signal per task per 

trial.  

The second method uses the parseval theorem 

[9] to extract the energy density features of the 

segmented signals.  39 features are extracted from 

the EEG signal per task per trial. In the third 

method band power of five frequency bands (8-

10Hz), (10-12Hz), (13-15Hz), (16-18Hz) and (19-

30Hz) from each segmented signal is extracted. 

195 features are extracted from the EEG signal 

per task per trial.  The FLNN is trained and tested 

with the three features sets.  

D. FLNN Classifier 

Since neural networks are used for 

identification and control, the learning 

capabilities of the networks can have significant 

effects on the performance of the system. If the 

information content of data input to the network 

can be modified in an appropriate way the 

network will be able to more easily extract the 

salient features of the data. This is the motivation 

behind the FLNN. Functional links basically 

expand the original input space into higher 

dimensions in an attempt to reduce the burden on 

the training phase of the neural network. In one 

sense no new ad hoc information has been 

inserted into the process, nonetheless, the 

representation has definitely been enhanced and 

separatibility becomes possible in the enhanced 

space, thus both the training and the training 

error of the network can be improved [10, 11]. 

For the first two feature sets the FLNN 

classifiers are modeled with 39 input neurons, 5 

hidden neurons and 4 output neurons. The 

functional link is applied to the input layer. The 

input layer has 39 inputs from the features 

extracted and 77 inputs provided by the functional 

link (fn) in eqn (1), applied on the input where n 

is the number of input neurons. 

 

          fn = (2n -1)                                              (1) 

 

The third FLNN model has 195 input neurons, 

389 unctional link neurons, 4 hidden neurons and 

4 output neurons. Hidden neurons in all three NN 

models are chosen experimentally. Training is 

conducted until the average error falls below 0.01 

or reaches a maximum iteration limit of 1000. 

Training Rounds versus Classification Accuracy of the FLNN
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Fig.2. Training round versus Classifications Accuracy for  

all three FLNN models for Subject 1. 
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The FLNN models are trained using the back 

propagation algorithm [12].  

In all classifiers mean square error is used as a 

stopping criterion. 80 data samples are used in 

this experiment. The training and testing samples 

is normalized using binary normalization 

algorithm [12]. Selection of the training and 

testing data is chosen randomly.  All four 

classifiers are trained with 80% data samples and 

tested with 20% data samples for a testing error 

tolerance of 0.1.  

III. RESULTS AND DISCUSSION 

Classification performance of the three FLNN 

models is summarized in Table I and II for subject 

1 and subject 2 respectively. The classification of 

the motor imagery signals for the four states is 

shown in the tables as the mean and maximum 

classification obtained from the 80 samples for 

subject 1 and subject 2. Subject 2 is a right handed 

person, while subject 1 can write using both left 

and right hands. From Table I and II it is 

observed that the proposed FLNN using MEIG 

features has good performance for subject 1; while 

for subject 2 the FLNN with parseval features has 

good performance.  Fig.2 shows the training 

rounds versus classification accuracy for all three 

FLNN models for subject 1. 

 

 
TABLE I 

CLASSIFICATION PERFORMANCE OF THE FLNN FOR SUBJECT 1 

 

 
 TABLE II 

CLASSIFICATION PERFORMANCE OF THE FLNN FOR SUBJECT 2 

MEIG Parseval Band Power 

Mean 

% 

Max 

% 

Mean 

% 

Max 

% 

Mean 

% 

Max 

% 

91 92.5 92.38 95 86 91.25 

 

 

From the results it is also observed that the 

performance FLNN with MEIG features has the 

shortest average testing time of 0.05s which 

makes it ideal for real time experiments. 

IV. CONCLUSION 

A novel classification algorithm for a four state 

BMI design for a wheelchair control using motor 

imagery is presented. Data collected from the 

sensorimotor cortex regions for relax, forward; 

left and right tasks are classified. Three FLNN 

models with different feature sets are trained and 

tested with motor imagery data.  Average 

performance of 93% was observed for the 

proposed MEIG features. It should be noted that 

the EEG data were collected from twenty trails 

only. Classification could be improved by training 

the subjects to control the EEG signals. Artifacts 

were not removed which improves the robustness 

of the proposed method.  

The output of the classifier can be translated to 

control the directional movements of a power 

wheelchair.  However many issues need to be 

investigated before the practical utility of the 

method can be established. BMIs have potential 

applicability beyond the restoration of mobility in 

paraplegics and would enable normal individuals 

to have direct brain control of external devices in 

their daily lives. 
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