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Abstract— The creation of gaps in forest canopies 

can dramatically change the microclimate and soil 

water balance which strongly influences the process 

of regeneration and biodiversity within forest 

ecosystems. Hence, understanding the microclimatic 

conditions in canopy gaps is a prerequisite in 

developing and improving techniques for forest 

management and conservation practices. However, 

information is scarce on how the size and shape of 

gaps and their spatial distribution affects the 

microclimate and soil water balance across forest 

stands. In the present study we investigated the 

potential for retrieving forest gap and canopy 

attributes from LiDAR and multispectral sensors in 

order to provide new opportunities for modelling 

forest microclimates. A spatially explicit 

microclimate model (FORGAP-BD) was developed 

which could be driven using spatial inputs from 

remote sensing. The model was implemented for a 

study site in the broadleaved deciduous forest, 

Eaves Wood, UK in order to quantify the spatio-

temporal dynamics of microclimates over an entire 

forest stand.  

 

Index Terms— LiDAR, multispectral, 

microclimate, FORGAP-BD, spatial 

I. INTRODUCTION 

orests are crucial to the well being of 

humanity; they provide foundations for life on 

Earth through ecological functions, by regulating 

the climate and water resources, and by serving as  
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habitats for plants and animals. In temperate 

forests wind throw often creates canopy gaps 

which can dramatically change the microclimate 

and soil water balance [1,2,11]. Hence, 

understanding the microclimate conditions in 

canopy gaps is a prerequisite in developing and 

improving techniques for forest management and 

conservation practices. Fig. 1 demonstrates the 

nature of these changes, in general terms.  

However, information is scarce on how precisely 

gap size and shape affects the microclimates 

within canopy gaps and beneath surrounding tree 

canopies and how the spatial distribution of  gaps 

influences microclimates across entire forest 

stands [2]. 

Remote sensing is increasingly seen as an 

important tool for providing information to 

achieve sustainable and efficient forest 

management. The past decade has seen growing 

interest in the use of remote sensing technologies 

in forest studies. In particular Light Detection and 

Ranging (LiDAR) devices together with new 

analytical techniques allow increasingly detailed 

information to be derived for forests. LiDAR 

systems offer an alternative to in situ field surveys 

and photogrammetric techniques for the 

collection of elevation data. LiDAR provides 

accurate, timely data, is capable of operating in 

difficult terrain and is increasingly affordable. 

LiDAR technology is becoming capable of 

providing 3-dimensional information at high 

spatial resolutions and vertical accuracies [5]. 

Forest attributes such as crown heights and 

individual canopy gap delineations can be directly 

retrieved from LiDAR data [11]  while tree 

species classifications may be derived from 

multispectral imagery [4]. Thus, with high spatial 

resolution remotely sensed imagery, the spatial 

properties and composition of tree canopies and 

gaps can be obtained over large areas. With the 

capabilities of direct retrieval of forest attributes 
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offered by remote sensing, this provides new 

opportunities to model forest gap microclimates. 

By developing an inherently spatial microclimate 

model and driving this with inputs from remote 

sensing we have the potential to quantify forest 

gap microclimates over entire forest stands. This 

study aims to examine the feasibility of such an 

approach using a case study of a broadleaved 

deciduous forest in the UK. 

II.    STUDY SITE AND DATA COLLECTION 

The study site was Eaves Wood, Silverdale (2˚ 

49’W, 54˚ 10’N), northern England, which 

covered an area of 50.6 ha. 

 
 
Fig. 1.  Gradients of microclimate conditions and soil moisture in 
forest canopy gaps. The  areas on the vegetation  represent the 
parts of the crowns that can receive direct solar radiation. 

 

The area is a mixed semi-natural deciduous forest 

and designated as an Area of Outstanding Natural 

Beauty and a Site of Special Scientific Interest.  

Dominant tree species are oak (Quercus petraea) 

and beech (Fagus Sylvatica). LiDAR data were 

acquired by the UK National Environment 

Research Council Airborne Research Survey 

Facililty (NERC ARSF) aircraft using Optech 

Airborne Laser Terrain Mapping (ALTM) 3033, 

in May 2008. The altitude of the aircraft was 900 

m above ground level and a swath width of 

approximately 600 m was surveyed along each 

flight line. Imagery of the study site was also 

acquired using a Daedalus Airborne Thematic 

Mapper (ATM). The aircraft altitude was 670 m 

(2200 ft) which generated imagery with a spatial 

resolution of 1 m. The ATM instrument acquired 

imagery in 12 wavebands across the visible, near-

infrared and short-wave infrared. 

 

III. EXTRACTION OF GAP AND CANOPY PROPERTIES 

A key determinant of forest microclimate, as 

described in the FORest GAP-Broadleaved 

Deciduous (FORGAP– BD) model is the receipt 

of solar radiation, which can be direct or 

transmitted through the canopy and therefore 

varies considerably both spatially and temporally. 

Hence, an important part of the project was to 

extract from remotely-sensed data those canopy 

variables that could be used to quantify the 

radiation regime within gaps and at the forest 

floor. 

 

A. Canopy extinction coefficient via tree species 

classification 

The attenuation of radiation by a tree canopy is 

quantified in the FORGAP-BD model as the 

product of the extinction coefficient and the leaf 

area index of the tree. The extinction coefficient 

depends on the canopy architecture and leaf angle 

distribution which is species dependent [7]. 

Hence, supervised training and a maximum 

likelihood decision rule were used to classify the 

ATM data in order to generate a species map. 

 Samples were taken randomly within the cluster 

of all vegetation types in the study area. This was 

considered as the most cost effective method. As 

to the size of the sample for each class, a 

minimum of 50-100 pixels is recommended by 

the majority of research community [8]. In the 

present study, 94 GPS points were used to classify 

the trees throughout the study area. At each 

sampling location a real time differential GPS 

(Leica System 500 with RTK) receiver with sub-

metre horizontal accuracy was used to provide 

positional information (Fig. 2). The GPS was 

positioned under or at the edge of the tree crown 

(depending on the positional accuracy) and the 

tree species at this and neighbouring positions 

was recorded. In the rectified image (same 

reference map as GPS points), whole crowns of 

the trees in the specific position and its 

neighbourhood were taken as the sample. As tree 

of the same species often differ in appearance in 

semi-natural woodland, samples of each category 

especially beech and oak were taken from 

scattered points to ensure as accurate 

representation as possible. Similarly, 104 points 

were measured using the same procedures in 

order to assess the accuracy of the classified 

ATM.    

10
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Fig. 2. Sampling points for tree species classifications using 
DGPS. 

 

 

For the purpose of this study, region of interest 

(ROIs) within the forest stand maps of the 

National Trust were used as guides to extract 

spectral signatures for each class. Since the aim of 

this study involves the classification of forest 

broadleaved deciduous species, sampling of 

training sites were based on the distribution of 

these targets. Five training classes (including 

bare/gap areas, oak, beech, other tree species and 

grass)  were chosen in equivalent to the five land 

cover classifications that was initially determined 

for the purpose of  forest microclimate modelling 

in the study area. Furthermore, each of these five 

classes will be assigned radiation extinction 

coefficients and driving these inputs into the 

FORGAP-BD model. Radiation extinction 

coefficients assigned to each classified tree 

species based on the values extinction coefficient 

(k) for broadleaved stands found in [3] (see Table 

1).  

 

 

 

 

 

 

 

 

 
 

TABLE 1 

VALUES OF EXTINCTION COEFFICIENT FOR GLOBAL 
RADIATIONMEASURED IN BROADLEAVED STANDS. 

Broadleaved stands k 

Grass 0.5 

Fagus Sylvatica (Beech) 0.43 

Mixed broadleaved (Other 

species) 
0.50 

Quercus petraea (Oak) 0.3 

 

B. Derivation of leaf area index 

Leaf area index (LAI) is the second parameter 

required to quantify the interception of solar 

radiation by the tree canopy. A number of 

vegetation indices were derived from the original 

12 spectral bands of the ATM. Through 

comparison with measurements of LAI made in 

situ using an LAI-2000 instrument (Fig. 3) it was 

found that a simple ratio (using the NIR (band 7) 

and green (band3)) was a suitable predictor of 

LAI across the study site.   
 

 
 
Fig. 3.  Relationship between LAI (measured in situ) and the 
simple ratio of NIR (830 nm)/green (560 nm) reflectance (ATM 
bands 7/3) for the broad-leaved stands 

 

C.  Gap delineation and canopy height model 

A possible approach for discriminating gaps from 

canopy areas would be to use a thresholding 

procedure based on the brightness of the pixels in 

the ATM imagery. However, this was found to be 
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unsuitable because of the spectral variability 

introduced by scene components such as sunlit 

and shaded parts of tree crowns and gaps [10,5]. 

Hence, in order to overcome the difficulties 

associated with spectral variability a masking 

approach based on the LiDAR data was 

developed. 

Gap identification from LiDAR imagery was 

performed using Erdas Imagine (v.9.1) and 

ArcGIS (v.9.2) software. Canopy heights were 

derived from LiDAR data; however an estimate of 

the ground elevation was needed. A digital terrain 

model (DTM) was constructed from elevation 

data provided by the U.K. Ordnance Survey (OS). 

The OS DTM was calibrated against the LiDAR 

last return point clouds of bare soils and road 

surfaces. A canopy height model (CHM) was 

calculated as the difference between elevation 

values in the LiDAR data and ground elevation at 

corresponding locations. Based on the field visits, 

it was determined that the height below which 

areas would be identified as gaps should be 

between 2m and 5 m. Thus, the height of 4 m was 

therefore selected as the threshold for 

distinguishing canopy from gap areas. From the 

CHM all grid cells with a height less than or 

equal to 4 m were assigned as gap areas. 

 

D. Forest  microclimate modelling  

A spatially explicit model of forest gap 

microclimates and soil water balance was 

developed based on previous reviewed literatures 

and field measurements of microclimates and soil 

water balance [13]. FORGAP-BD model is 

written in the dynamic script modelling language 

PcRaster [8] and comprises two sub-modules, 

radiation and soil water balance. The radiation 

module calculates the potential radiation on the 

vegetation, the potential radiation on the saplings 

in the gap and area surrounding the gap and the 

potential radiation on the soil. The second sub 

module calculates the soil moisture content at 

5cm depth both within gaps and beneath the 

forest canopy. FORGAP-BD was developed to be 

driven by a set of spatial inputs derived from 

remote sensing (canopy height, gap map and LAI) 

together with a DEM and meteorological data 

from a nearby weather station (Fig. 4). In order to 

refine the model, future work will concentrate on 

validation using ground-based 

micrometeorological measurements. 

 

 
 

Fig. 4.  Methodological framework of the integration of remotely 

sensed and meteorological data into the FORGAP-BD model.  

IV. ACCURACY ASSESSMENT 

The thematic maps produced by classification 

methods are subjected to errors. An assessment on 

the accuracy of each classification is required in 

order to estimate the magnitude of these errors. 

Accuracy describes the closeness of a 

measurement to the true value of the quantity 

being measured. The accuracy assessment 

procedure is conducted by comparing the 

information from the classified map with the 

corresponding information on the reference map 

or information collected in the field. The standard 

method used to report classification errors is 

through the use of an error matrix, often known 

as confusion matrix.  A confusion matrix is a 

square tray set out in rows and columns which 

expresses the number of sample units assigned to 

a particular class or category relative to the actual 

class as verified by ground reference data. In this 

study, the accuracy of the classification using 

unsupervised and supervised classifier is based on 

the computation and analysis of this confusion 

matrix.  

A confusion matrix allows the assessment 

classification accuracy to be carried out both 

descriptively and analytically. An overall accuracy 

is computed by dividing the total number of pixels 

classified correctly by the total number of pixels 

forming the test data set. The diagonal elements 

of the confusion matrix represent the pixels in all 

reference classes.     The overall accuracy can be 

expressed as producer’s accuracy or user’s 
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accuracy. The producer’s accuracy is based on the 

reference data (columns) and it is the probability 

of misclassifying a pixel belonging to a given 

class, resulting in omission errors. Conversely, the 

user’s accuracy is based on the total number 

classified in specific (rows) classes, in which a 

pixel is assigned erroneously to a given class, 

resulting in commission errors. It is insufficient to 

rely on the overall accuracy value alone, 

especially when accessing product of 

classification method. An analytical approach 

using multivariate statistical techniques is also 

useful. A widely used multivariate technique for 

accuracy assessment of classification output is 

Kappa analysis. The kappa coefficient measures 

the randomness of the results by computing the 

difference between the actual agreement in the 

confusion matrix against the probable agreement 

as indicated through the sum of rows of columns 

of the matrix.The kappa coefficient is calculated 

from the following equation [1]: 

 

 

    

(1) 

 

where n :total number of pixels used for testing 

the accuracy of a classifier 

 p : number of classes 

 Σxii : sum of diagonal elements of confusion 

matrix 

  Σxio : sum of row i 

 Σxoi : sum of column i 

 

V.   RESULTS AND DISCUSSION 

A.  Map of tree species  

A map of the dominant deciduous tree species 

(oak and beech) was produced from supervised 

classification of the ATM data with an assessed 

accuracy of 75% (Kappa = 0.67) (see Fig. 5). Oak 

covers 15% of the area and beech 10%. Other 

sub-dominant species (e.g. birch, hazel, yew and 

pine) cover 67 % of the total area, with the 

remaining 8% being gaps.  

 

 
 

Fig. 5.  Map of tree species and associated extinction coefficients 

based on classified ATM data 

 

B.  Derivation of Leaf Area Index  

An examination of the accuracy of the LAI map 

as measured by the RMSE from cross-validation 

confirmed that the use of ATM imagery to 

estimate LAI spatially is valid. There was a strong 

relationship between predicted and measured LAI 

(R2 = 0.82; Fig. 6.(a), an RMSE of 0.28. This 

result is in agreement with previous study by [3] 

which defined SR using NIR and green bands as a 

best LAI estimator for broadleaved deciduous 

woodlands.   
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Fig. 6 (a). LAI estimated using SR (NIR/Green) versus 

measured LAI (P < 0.05). 

Fig. 6 (b) shows LAI map derived from the 

ATM data using the relationship between Simple 

Ratio (SR) and in-situ LAI. The calculated root 

mean square error (RMSE) between the in-situ 

and the predicted LAI was 0.280 (R2 = 0.82).  
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Fig. 6(b).  LAI map of Eaves Wood derived using ATM data.  

 

B.  Maps of tree height and canopy gaps 

Map of tree height as estimated from CHM using 

LiDAR shown in Fig. 7 while gap areas extracted 

from the LiDAR data are shown in Fig. 8. An 

accuracy assessment using 90 ground-based 

control points revealed a root mean squared error 

(RMSE) of 0.48 m for the DTM and an RMSE of 

0.82 m for the canopy surface height image. 
 

 
 
Fig. 7.  Map of tree height estimated from the LiDAR CHM.   

 

 

 
 
Fig. 8.  Map of canopy gaps from derived from the LiDAR data. 

 

 
D.   FORGAP-BD outputs  

The spatial data above were used to drive the 

FORGAP-BD model in order to generate both 

spatial and temporal simulations of forest 

microclimates. In order to demonstrate the output 

from the FORGAP-BD model, fig. 9 shows 

spatial outputs from FORGAP-BD for a specific 

time point (solar noon), which illustrates the 

detailed information concerning microclimate 

that the model is able to generate. Fig. 9 shows 

diurnal time series of solar radiation, air 

temperature and relative humidity for a specific 

location at the centre of as well as a location 

beneath the adjacent forest canopy (Julian day : 

200).   

The diurnal changes in solar radiation, air 

temperature, relative humidity and wind speed as 

simulated by FORGAP-BD for the centre of a 

selected gap and beneath the adjacent forest 

canopy are shown in Fig.10.  

Total solar radiation at 12 noon on Julian day 

200 was 713 W.m-2 in the gap and 521 W.m-2 

beneath the adjacent canopy. At 12 noon, air 

temperature was 30.9˚C at the gap centre and 

27.4˚C in the sub-canopy.  Wind speed was found 

to be considerably higher in the gap as compared 

to the sub-canopy. However, relative humidity 

values were lower in the gap than the forest 

during mid day. Hence, all the microclimate 

variables calculated using the FORGAP-BD 

model were as expected. 
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Fig. 9. Spatial outputs of a) solar radiation and b) soil moisture 
content derived  from FORGAP-BD within  Eaves Wood at solar 
noon. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

 

b)  

Fig.10. FORGAP-BD outputs showing the diurnal patterns of total solar radiation, air temperature, wind speed and relative humidity at a selected gap centre 
and beneath the adjacent forest canopy on Julian day 200. 
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VI. CONCLUSION 

This study has demonstrated that it is possible 

to extract gap and canopy properties from LiDAR 

and multispectral data in order to generate spatial 

inputs for forest gap microclimate modelling. The 

use of remote sensing greatly reduces the time 

and fieldwork effort required and can provide a 

comprehensive set of spatial information that is 

difficult to obtain using traditional 

methods.Remote sensing provides an increasing 

variety of spatial data layers that are potentially 

useable as model input. This study has 

demonstrated that it is possible to develop a 

simulation model using gap and canopy data 

derived from remote sensing in order to generate 

spatial and temporal estimates of microclimate. 

Further work will focus on improving the 

methods for delineating gaps and extracting 

canopy properties from LiDAR and hyperspectral 

data, driving the model using a seasonal time 

series of gap and canopy variables and evaluating 

the impact of these techniques on the accuracy of 

microclimate model outputs.   
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