LAPURAN PROJEK TAHUN AKHIR KURSUS DIPLOMA LANJUTAN KEJURUTERAAN ELEKTRONTK KAJIAN KEJURUTERAAN, I.T.M., SHAH ALAM

MICROCOMPUTER CONTROLLED
ROBOTIC ARM

BY

HASSAN BIN ALIAS

DECEMBER 1984

ACKNOWLEDGEMENT:

The author would like to express his sincere gratitude to his project supervisor En. Ahmad Fauzi bin Ibrahim for his devoted and tireless quidance and encouragement during the course of accomplishing the project.

The author's appreciation to the following personnels for their encouragement and constructive comments without which the project would not have been accomplished better:-

- 1. En. Yusof (Course Tutor of the Electronic Department)
- 2. En. Azad Chacho (Project Coordinator)
- 3. En. Zainal (Lecturer of Computer Science)
- 4. En. Nazimuddin (Texas Instrument's Engineer)
- 5. En. Mail Sukadin (Lektron Coorperation's Engineer)
- 6. All Electronics Department Lecturers and Technicians.

Also the author like to thank the mechanical department which provided materials for making the chasis of this project.

Last but not least, the author's report is specially dedicated to his loving family; lecturers School of Engineering fellow classmate who had given their great encouragement during the course of his study in ITM.

Hassan Alias
Advanced Diploma in Electronics Engineering
M.I.T., SHAH ALAM.

PREFACE

The microcomputer controlled robotic arm is designed to have a five degree of freedom and of a small scale size. It has an articulated arm jointed at shoulder, elbow and wrist positions. Both the upper and lower arms rotate about the base and there is a motor driven gripper.

The entire robotic system can be divided into three main parts namely the controlling computer, interface board and the robot itself which is made up of mechanical parts.

The interface board is designed, base on memory mapped peripheral of the controlling computer, that is the robotic motors are treated as memory locations instead of input/output ports. Each of the arm movement is servo controlled, which mean, there is a position sensor feeding back information to the interface board, where it is compared with the programmed position and automatically taking corrective action. Since the servo action is independent of the host computer, it greatly simplifying the software design to drive the robot. This interface also employed a parallel bit data transfer from the data bus to the interface circuitory.

All the five axes are driven by a motor with an integral gearbox. For the wrist and gripper, small in-line gearboxes are used. The other axes namely shoulder, elbow and the base utilised a more powerful gearboxes. The motors require a 12V DC supply.

CONTENTS	PAGE
ACKNOWLEDGEMENT	i
PREFACE	ii
CHAPTER 1 INTRODUCTION	
1.1 GENERAL INTRODUCTION	1
1.2 OBJECTIVE AND OUTLINE	4
1.3 APPLICATION	6
CHAPTER 2 HARDWARE DESIGN CONCEPTS AND ALTERNATIVES.	
2.1 INPUT/OUTPUT INTERFACING	7
2.2 MEMORY MAPPED DEVICE INTERFACING	9
2.3 INTERFACING DAC	13
2.4 OPERATIONAL AMPLIFIER (OPAMP)	20
2.4.1 UNITY GAIN NON-INVERTING FOLLOWER	20
2.4.2 CURRENT TO VOLTAGE CONVERTER	21
2.4.3 NON-INVERTING FOLLOWER	21
2.4.4 DIFFERENTIAL AMPLIFIER WITH GAIN	22
2.4.5 SERVO AMPLIFIER	24
2.5 INTERFACE MOTORS TO MICROCOMPUTER	26
2.5.1 MOTOR CONTROL SYSTEM USING COMPARATOR	27
2.5.2 MOTOR CONTROL SYSTEM USING SUMMER	30
2.5.3 MOTOR CONTROL SYSTEM USING A DIGITAL	
POSITION CONTROLLER.	33

2.5.4 DISCUSSION		35
CHAPTER 3 HARDWARE DESI	<u>GN</u>	
3.1 INTERFACE CIRCUIT OPERA	TION	37
3.2 GRIPPER OPERATION		47
3.3 MECHANICAL CONSTRUCTION	AND OPERATION	49
3.4 TESTING AND CALIBRATION	PROCEDURE	53
3.4.1 SETTING THE MECHANI	CAL PART	53
3.4.2 TESTING THE INTERFA	CE BOARD	54
CHAPTER 4 SOFTWARE EXAM	PLE AND DEVELOPMENT	
4.1 SOFTWARE EXAMPLE AND DE	VELOPMENT	56
4.2 PROGRAM EXAMPLE		58
CHAPTER 5 CONCLUSION AN	D FUTURE DEVELOPMENT	
5.1 CONCLUSION		61
5.2 FUTURE DEVELOPMENT		63
APPENDICES		
A.1 USER GUIDE		69
A.2 SLOT SETTING PROCEDURE	AND SLOT BUS	70
A.3 WIRING DIAGRAM		74
A.4 LIST OF COMPONENT		77
A.5 DATA SHEET		79
A.6 THE INTEL 8080 INSTRUCT	ION SET	102
BILIGRAPHY		104
		. • .