DESIGN OF HYDRAULIC STRUCTURES (AS PRACTICED IN MALAYSIA)

P.T.A.R.

ACKNOWLEDGEMENT

The text of this project was prepared by En. Othman Abdullah and En. Zulkefle Ghazali and assisted by Ir. Sahol Hamid Abu Bakar as project supervisor. We wish to express our heartiest gratitude for his intimate and friendly help and guidance from the early stages until the completion of this project.

Thanks are also due to the following staffs of D.I.D for their help inthe discussion and preparation of design example used in this project; Ir. Fazillah Saidin and Ir. Abu Talib Abu Bakar.

Our thanks also go to the MADA staffs; Puan Fong and Puan Asmahan who contributed many relevant books in the preparation of the project.

We also indepted to all those who contributed directly and indirectly to the final completion of the project.

SYNOPSIS

Hydraulic structures are used in storm runoff drainage works to control water. Flowing water does not readily change direction, accelerate or slow down without help, and water will flow faster than it should if a thalweg is too steep, causing uncontrolled erosion.

Hydraulic structures increase the cost of drainage facilities, and their use should be limited by careful and through hydraulic engineering practices to those locations and functions justified by prudent planning.

On the other hand, use of hydraulic structures can reduce initial and future maintenance costs by changing the character of the flow to fit the project needs, and by reducing the size and cost of related facilities.

Hydraulic structures include energy dissipators, channel drops or checks, acceleration chutes, bends, baffle chutes, and many other specific drainage works. Their shape, size, and other features vary widely from job to job, depending upon the function to be served. Hydraulic design procedures, and sometimes model testing must govern the final design of all structures.

CONTENTS

		PAGE
ACKNO	\mathbf{i}_{\uparrow}	
SYNOP	ii	
NOMEN	iii	
LIST.	vi	
CHAPT	ER ONE	
1.1	Introduction	Ţ
1.2	Irrigation System	2
1.3	Structures	3
CHAPT	ER TWO	
2.0	Types Of Canal Sections	7
2.1	Unlined Earth Canals	7
	2.1.1 Cross-section	7
	2.1.2 Location	9
	2.1.3 Curvature And Velocity	9
	2.1.4 Freeboard	11
	2.1.5 Bund Top Width And Berm	11
	2.1.6 Flow Formulas	12
2.2	Lined Canals or Lateral	1.4
	2.2.1 Cross Section	1.4
	2.2.2 Location	15
	2.2.3 Curvature and Velocity	16
	2.2.4 Freeboard and Bund Heights	16
	2.2.5 Bund Width	17
	2.2.6 Flow Formula	17

CONTENTS (cont.)

CHAPT	PAGE		
3.0	Convey	18	
3.1	Inverted Syphons		18
	3.1.1	Hydraulic Design Consideration	18
3.2 P	21		
	3.2.1	Hydraulic Head Losses	22
3.3	Flumes		23
	3.2.1	Flume Section	24
	3.2.2	Hydraulic	24
3.4	Road Culvert		25
	3.4.1	Design Considerations	25
3.5	Channel Drop		26
	3.5.1	Vertical Drop	26
	3.5.2	Hydraulic Analysis	27
	3.5.3	Practical Modifications	28
	3.5.4	Sloped Drops	28