BUCKLING BEHAVIOUR OF STEEL PLATE SUBJECTED TO AXIAL LOAD

BY: MOHD FAZARUDIN BIN ABDULLAH @ ZAKARIA OCTOBER 1998

A REPORT SUBMITTED TO THE FACULTY OF CIVIL ENGINEERING, MARA INSTITUTE OF TECHNOLOGY, SHAH ALAM IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR AWARD OF DEGREE IN BACHELOR OF ENGINEERING (HONOURS) (CIVIL).

OCTOBER 1998

TABLE OF CONTENTS

TITLE

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF PLATES	vii
NOTATIONS	viii
ABSTRACT	ix

CHAPTER 1

1.0	INTRODUCTION	1
1.1	General	1
1.2	Objective	2
1.3 S	Scope Of Work	3
	1.3.1 Prepared Of Test Specimens	3
	1.3.2 Testing	3
	1.3.3 Data Analysis	4

CHAPTER 2

2.0	LITERATURE REVIEW	5
2.1	General	5
2.2	Variety Of Connection And Joining Methods	6
2.3	Euler's Theory For Column With Pinned Ends	7
2.4	Comparison Of Euler Theory With Experimental Results	10

2.5	Euler "Validity Limit"	11
2.6	Deflection	13
2.7	Strain Gauge	18
2.8	Installation Procedure For Bending	19
2.9	Basic Measurement Systems	19
2.10	Analytical Determination Of Principal	
	Strains From Rosette Readings	22

CHAPTER 3

3.0	PREPARATION OF TEST SPECIMEN	26
3.1	Tensile Test	26
3.2	Compression Test	27
	3.2.1 General	27
	3.2.2 Experiment Set-up	27

CHAPTER 4

4.0	ANALYSING USING FINITE ELEMENT METHOD	29
4.1	Finite Element Method	29
4.2	Process Of Discretisation	29
4.3	Overview Of Model Generation	31
4.4	The Finite Element Model	32
4.5	Computer Input In ANSYS	33

ABSTRACT

This project is to study the buckling behaviour of steel plate subjected to axial load. Column specimens will be tested in Civil Engineering Laboratory and followed by the computer model in order to determine the stress distribution and the deflection. Modulus of elasticity, (E) will be taken from tensile test coupon.

In the experiment and investigation reported here only one thickness i.e. 6 mm mild steel was chosen and rectangular sections, $50 \text{ mm} \times 6 \text{ mm}$ and 300 mm height were tested. The rectangular columns were supported at both ends and subjected to a compressive load aligned with its centroidal axis. The failure load and deflection was recorded.

The theoretical ultimate load was calculated using the effective width concept. This method was chosen because it gives a more true life picture of the actual behaviour of a compressed plate and plate type sections. For the case of steel plate sections the reduction in cross sectional area was taken into consideration.

Experimental deflection will be used as a reference in order to iterate the modulus of elasticity, (E) in the calculation and computer analysis (ANSYS).

Using the same value of axial load, (P) than compare the deflection between experimental and computer analysis. If the deflection is not equal than change the modulus of elasticity, (E) until get the same deflection.

CHAPTER 1

1.0 INTRODUCTION

1.1 General

Typical application of structural steel is in industrial building, bridge, high-rise building, and spectator stands, stadium, galvanised electricity power-supply pylons, welded pine lines and others. Steel is normally use in heavy and medium construction because it main properties which it strong under both condition either compression and tension comparatively to materials such as timber and concrete. This metal also can take an excessive loading due to wind, earthquake, vibration, impact and snow.

The selection of specific application is determined by the following factor:

- i. Strength level required.
- ii. Mechanical properties required together with strength.
- iii. Steel making heat treatment and other plant available.
- iv. Arbitrary local conditions and code of practice.