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 ABSTRACT  

This paper investigates a new method for solving the Goursat partial differential equation 

(PDE) using a combination of the central finite difference method (FDM) and Taylor series 

expansion. The study evaluates the effectiveness and accuracy of this new approach, 

analyzing linear Goursat problems and conducting multiple numerical experiments. The 

simulation study demonstrates that the suggested approach surpasses the existing method in 

terms of performance and accuracy. Applying this proposed scheme will minimize the cost, 

especially for engineers that might apply this model in solving their real-life problems. 
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1. Introduction 

 

It has been recognized that a significant proportion of differential equations, which are used to 

represent real-world issues, cannot be solved using established analytical techniques. In such 

circumstances, one must settle for numerical approximations of the models that can be achieved 

by numerous numerical techniques of diverse characteristics (Fadugba et al., 2021). The basic 

form of the Goursat partial differential equation problem is as follows (Wazwaz, 1993): 
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where 
xyu  is the mixed derivative in space x and y and ( ), , , ,x yf x y u u u  is a function of the 

two independent variables x and y, the dependent variable u and the derivative terms xu and yu . 

It appears in a variety of scientific and technological fields. There are researchers such as 

(Son & Thao, 2019; Tian et al., 2020; Mokdad, 2021) studied the applications of the Goursat 

problem in the trajectory of an economic dynamics, global optimal scheduling, geoscience, bio-

medical engineering and Nordström-like black hole.  

Several techniques have been suggested such as Newton-Cotes Integration (Deraman & 

Nasir, 2015), reduction differential transform (Naseem, 2022), the fuzzy transform (Saharizan & 

Zamri, 2019; Kim Son et al., 2021), iterative regularization (Meziani et al., 2021), Signature 

Kernel (Salvi et al., 2021) and method of transmutation operators (Sitnik & Karimov, 2023; 

Karimov & Yulbarsov, 2023). The established FDM is provided by and averages the functional 

values as (Nasir & Ismail, 2013): 
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(2) 

where h represents grid size.  

Initially, second-order linear and nonlinear hyperbolic Goursat PDEs were solved using the 

FDM (Pandey, 2014a; 2014b; Nasir & Ismail, 2012; 2013). A deeper understanding and 

improvements of these schemes will improve the mathematical modelling of problems where the 

Goursat problem arises. However, the numerical schemes for solving Goursat problems deal with 

difficulties to preserve the linearity of approximate numerical solutions. Therefore, there is a 

motivation to develop a better method with higher accuracy and preserve linearity for the Goursat 

scheme. Moreover, Taylor series expansion can be an alternative method to resolve the problem 

(Tailor & Bhathawala, 2011; Jacquemin et al., 2020). Hence, we introduce a new approach named 

central difference - Taylor series expansion method (CD-TSE). The proposed scheme combines 

the central FDM with higher-order Taylor series expansion to solve homogenous and 

inhomogeneous linear Goursat PDE problems.  

Section 2 (methodology) will formulate the CD-TSE, and Section 3 (results and discussions) 

will apply it to three different classes of linear Goursat problems. Furthermore, the numerical 

result of CD-TSE will be given at the last section and conclusion. 

 

2. Methodology 

The central difference is one of the basic formulae of FDM for the approximation of the first-order 

derivatives of a function. The second-order partial derivatives by using FDM is constructed based 

on the Taylor series expansion and written in the following form (Twizell, 1984): 
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(3) 

known as central difference formulas for 
2u

x y



 
 at ( ),x y with the truncation error, ( )O h  and step 

size, h . 

The next step is to adopt difference formulas (3) into the left-hand side of the standard 

form of Goursat problem (1) is called discretizing process. Hence, the derivation of Goursat 

schemes can be written as shown below: 
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where ( , , , , )x yf x y u u u can be computed by referring to the selected Goursat problems and 

approximated by using the higher-order Taylor series expansion. 

 

Moreover, the general form of the Taylor series expansions for two variables functions 

( , )f x y , and can be written as (Pantaleón & Ghosh, 2015):      
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(5) 

where, n is the order starting from 0 till kth term, x  and y are the step size and ( )0 0,f x y  is an 

origin.  

Thus, this paper will use up to fiftieth terms (k is 15) of the Taylor series and (5) can be 

written as:                                                           
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(6) 

By letting 
0x x x= + , 0y y y= +  and step size x y h =  = . Hence, the right-hand side of the 

standard form of Goursat problem (1) can be approximated as shown below: 

 

                                  

( )

 

0 0

2 2

2

3 3

3 3

, ( , , , , ) ( , )

( , ) ( , )

( , ) ( , )1

2! 2 ( , )

( , ) ( , )1

3! 3 ( , ) 3 ( , )

x y

x y

xx yy

xy

xxx yyy

xxy xyy

f x h y h f x y u u u f x h y h

h f x h y h h f x h y h

h f x h y h h f x h y h

h f x h y h

h f x h y h h f x h y h

h f x h y h k f x h y h

+ + =  − −

 + − − + − − 

 − − + − −
+  

+ − −  

 − − + − −
+  

+ − − + − −  

...+

                                                                    

 

(7) 

Therefore, the next stage is to adopt central difference formulas (3) and approximate via Taylor 

series expansion into the left and right-hand sides of (1), respectively.  

Hence, the derivation of linear Goursat schemes using CD-TSE can be written as given: 
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(8) 

By rewriting in index form and shifting 1i i→ + , 1j j→ +  will yields: 



Deraman et al., Malaysian Journal of Computing, 9 (1): 1768-1775, 2024 
 

1771 
 

                     

( )

2, 2 2, , 2 ,

2 2 2 2

, , , , , ,

2

3 3 3 3 3

, , , ,

2
2!

4 .

3 3 ....
3!

i j i j i j i j

i j i j i j i j i j i j

i j i i j j i j

i j i j i j i j

i i i j j j i i j i j j

u u u u

h
f h f f f f f

h O h
h

f f f f

+ + + += + −

        
+ + + + +    

              
+ + 

     
+ + + + +  

              

                                                                    

 

(9) 

In the next section, the approximation (9) will be tested into homogenous and inhomogeneous 

linear Goursat PDE problems.  

 

3. Results and Discussions 

 

 Example 1:  

 

 Take into consideration the Goursat linear homogeneous problem. 
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The exact to the problem stated in (10) is ( , )
x y

u x y e
+

= (Naseem, 2022). 

By applying formula (9) to problem (10), differentiating the derivative terms and adopting 

the initial condition. Thus, the new scheme using CD-TSE formula can be rewritten as: 

 

                                              ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2, 2 2, , 2 ,

2 2

2

2

3 3 2 2

1
2 2

4 .

...
6 6 2 2

i j i j i j i ju u u u

ih jh
ih jh ij h

h O h
ih jh ih jh ih jh

+ + + += + −

 
 + + + + +
 + +
 
 + + + + +
  

                                                                    

 

(11) 

Comparative study between scheme (2) versus CD-TSE scheme (13) have been done for problem 

(10).  

 

Table 1. Approximate numerical solution at 1=h  for problem (10). 

Scheme u(x, y) 

u(1,1) u(2,2) u(3,3)       u(4,4) 

Exact 7.3891 54.5982 4.0343e+02 2.9811e+03 

Standard (2) 8.0609 68.7114 5.9443e+02 5.1802e+03 

CD-TSE (11) 8.0609 43.3343 3.3928e+02 2.1882e+03 

 

Table 2. Average relative errors for problem (10). 

Step size (h) Standard (2) CD-TSE (11) 

1 3.2861e-01 1.8976e-01 

0.8 1.7329e-01 1.1441e-01 

0.4 3.2760e-02 2.8814e-02 

0.2 7.3749e-03 7.3720e-03 

 

The approximate solution and average relative errors at selected step sizes are illustrated in 

Table 1 and Table 2. The average relative error in Table 2 becomes smaller as the grid size 

decreases for both schemes and CD-TSE is powerful than standard scheme. The numerical 

experiments signify that, the accuracy level of the CD-TSE scheme (11) is higher than standard 

scheme (2) for linear homogeneous Goursat problem (10). Furthermore, the proposed scheme is 

also preserving the linearity. 
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Example 2:  

 

Consider the following linear inhomogeneous Goursat problem 
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(12) 

The exact is ( ), x yu x y y e += +  (Ahmad & Mustaq, 2015). 

By applying formula (9) to problem (12), differentiating the derivative terms and adopting 

the initial condition. Thus, the new scheme using CD-TSE formula can be rewritten as: 
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(13) 

Comparative study between scheme (2) and scheme (13) have been done for problem (12).  

The approximate solution and average relative errors at selected step sizes are illustrated in Table 3 

and Table 4.  

 

Table 3. Approximate numerical solution at 1=h  for problem (12). 

Scheme u(x, y) 

u(1,1) u(2,2) u(3,3)       u(4,4) 

Exact 8.3891 56.5982 4.0643e+02  2.9850e+03 

Standard (2) 9.0610 70.7114 5.9743e+02 5.1842e+03 

CD-TSE (13) 9.0609 49.3343 3.5028e+02 2.2242e+03 

 

Table 4. Average relative errors for problem (12). 

Step size (h) Standard (2) CD-TSE (13) 

1 3.2330e-01 1.6859e-01 

0.8 1.7012e-01 9.0166e-02 

0.4 3.2032e-02 1.9896e-02 

0.2 7.1979e-03 7.1645e-03 

 

The average relative error in Table 4 becomes smaller as the grid size decreases for both and 

CD-TSE is superior to standard scheme. The numerical experiments signify that, the accuracy 

level of the CD-TSE scheme (13) is higher than standard scheme (2) for linear inhomogeneous 

Goursat problem (12). Furthermore, the proposed scheme is also preserving the linearity. 

 

Example 3:  

 

Consider the following linear inhomogeneous Goursat problem.  
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(14) 

The problem has been used by (Wazwaz, 2009). The problem's exact solution is ( ) 2 2, x yu x y x y e += +  

(Datta et al., 2021). 
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By applying formula (9) to problem (14), differentiating the derivative terms and adopting 

the initial condition. Thus, the new scheme using CD-TSE formula can be rewritten as: 
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(15) 

Below are the approximate numerical solutions and average relative errors at various 

selected grid points for the problem (14) results comparing the standard scheme (2) and CD-TSE 

scheme (15).  

Table 5. Approximate numerical solution at 1=h  for problem (14). 

Scheme u(x, y) 

u(1,1)  u(2,2) u(3,3) u(4,4) 

Exact 8.3891 7.0598e+01 4.8443e+02 3.2370e+03 

Standard (2) 6.3943 4.4119e+01 3.1079e+02 2.4908e+03 

CD-TSE (15) 6.3943 5.9334e+01 3.7435e+02    2.4442e+03 

 

Table 6. Average relative errors for problem (14). 

Step size (h) Standard (2) CD-TSE (15) 

1 2.6296e-01 2.1293e-01 

0.8 2.4627e-01 1.4867e-01 

0.4   1.8820e-01 4.0671e-02 

0.2 1.5288e-01 1.0175e-02 

 

The approximate solution and average relative errors at selected step sizes are illustrated in 

Table 5 and Table 6. The average relative error in Table 6 becomes smaller as the grid size 

decreases for both and hence CD-TSE is efficient than standard scheme. The numerical 

experiments signify that, the accuracy level of the CD-TSE scheme (15) is higher than standard 

scheme (2) for linear inhomogeneous Goursat problem (14). Furthermore, the proposed scheme is 

also preserving the linearity. 

 

4. Conclusions 

The aim of this paper was to create novel approaches for solving linear Goursat partial 

differential equations (PDEs) using the central finite difference method in combination with 

Taylor series expansion. Our goal was successfully accomplished, resulting in the CD-TSE 

scheme, which proved to be highly efficient and precise in solving both homogeneous and 

inhomogeneous linear Goursat PDE problems. The numerical analysis showed that the CD-TSE 

scheme outperformed the standard method (previous study), and its greatest advantage was its 

ability to preserve linearity effectively. There are many applications involving Goursat partial 

differential equation problems found in various fields of sciences and mathematical engineering. 

Applying this proposed scheme will minimize the cost, especially for engineers that might apply 

this model in solving their real-life problems. The cost will be calculated in terms of derivation 

time, running time, software development, energy, and production. 

 

 



Deraman et al., Malaysian Journal of Computing, 9 (1): 1768-1775, 2024 
 

1774 
 

Funding 

The facilities and financial support provided by Universiti Teknologi MARA, Malaysia, are 

gratefully acknowledged by the authors. 

 

Author Contribution 

Author1 conducted the numerical analysis and interpreted the results. Author2 wrote the 

research methodology. Author3 prepared the literature review and oversaw the article writing. 

 

Conflict of Interest 

The authors have no conflicts of interest to declare. 

 

References 

Ahmad, J., & Mushtaq, M. (2015). Exact solution of linear and non-linear Goursat problems. 

Universal Journal of Computational Mathematics, 3, 14-17. 

Datta, M., Alam, M. S., Hahiba, U., Sultana, N., & Hossain, M. B. (2021). Exact Solution of 

Goursat Problem with Linear and Non-linear Partial Differential Equations by Double 

Elzaki Decomposition Method. Applied Mathematics, 11(1), 5-11. 

Deraman, R. F., & Nasir, M. A. S. (2015). Goursat Partial Differentian Equation (Numerical 

Integration Method).  Germany: LAP Lambert. 

Fadugba, S. E., Ogunrinde, R. B., & Ogunrinde, R. R. (2021). Stability analysis of a proposed 

scheme of order five for first order ordinary differential equations. Malaysian Journal of 

Computing (MJoC), 6(2), 898-912. 

Jacquemin, T., Tomar, S., Agathos, K., Mohseni-Mofidi, S., & Bordas, S. P. (2020). Taylor-series 

expansion based numerical methods: A primer, performance benchmarking and new 

approaches for problems with non-smooth solutions. Archives of Computational Methods in 

Engineering, 27(5), 1465-1513. 

Karimov, S. T., & Yulbarsov, K. A. (2023). The Goursat problem for a third-order pseudo-

parabolic equation with the Bessel operator. In AIP Conference Proceedings 2781(1). AIP 

Publishing. 

Kim Son, N. T., Long, H. V., & Dong, N. P. (2021). On Goursat problem for fuzzy random partial 

differential equations under generalized Lipschitz conditions. Iranian Journal of Fuzzy 

Systems, 18(2), 31-49. 

Meziani, M. S. E., Boussetila, N., Rebbani, F., & Benrabah, A. (2021). Iterative regularization 

method for an abstract inverse Goursat problem. Khayyam Journal of Mathematics, 1-19. 

Mokdad, M. (2021). Conformal Scattering and the Goursat Problem for Dirac Fields in the Interior 

of Charged Spherically Symmetric Black Holes. arXiv preprint arXiv:2101.04166. 

Naseem, T. (2022). Novel techniques for solving Goursat partial differential equations in the linear 

and nonlinear regime. Mathematics (ISSN: 2790-1998 Print, 2790-3257 Online), 1(1), 17-

37. 

Nasir, M.A.S., & Md Ismail, A.I. (2012).  Application of high-order compact finite difference 

scheme to nonlinear Goursat problem. World Academy of Science, Engineering and 



Deraman et al., Malaysian Journal of Computing, 9 (1): 1768-1775, 2024 
 

1775 
 

Technology (WASET), 68, 1605-1615. 

Nasir, M.A.S., & Md Ismail, A.I. (2013).  A fourth-order compact finite difference scheme for 

Goursat problem. Sains Malaysiana, 42(3), 341-346. 

Pandey, P.K. (2014a). A Finite Difference Method for Numerical Solution of Goursat Problem of 

Partial Differential Equation. OALib, 01(06), 1–6.  

Pandey, P.K. (2014b). A Fourth Order Finite Difference Method for Numerical Solution of the 

Goursat Problem. Acta Technica Jaurinensis, 7(3), 319–327.  

Pantaleón, C., & Ghosh, A. (2015). Taylor series expansion using matrices: An implementation in 

MATLAB®. Computers & Fluids, 112, 79-82. 

Saharizan, N. S., & Zamri, N. (2019). Numerical solution for a new fuzzy transform of hyperbolic 

Goursat partial differential equation. Indonesian Journal of Electrical Engineering and 

Computer Science, 16(1), 292-298. 

Salvi, C., Cass, T., Foster, J., Lyons, T., & Yang, W. (2021). The Signature Kernel is the solution 

of a Goursat PDE. SIAM Journal on Mathematics of Data Science, 3(3), 873-899. 

Sitnik, S. M., & Karimov, S. T. (2023). Solution of the Goursat problem for a fourth-order 

hyperbolic equation with singular coefficients by the method of transmutation operators. 

Mathematics, 11(4), 951. 

Son, N. T. K., & Thao, H. T. P. (2019). On Goursat problem for fuzzy delay fractional hyperbolic 

partial differential equations. Journal of Intelligent & Fuzzy Systems, 36(6), 6295-6306. 

Tailor, M. R., & Bhathawala, P. H. (2011). Linearization of nonlinear differential equation by 

Taylor’s series expansion and use of Jacobian linearization process. International Journal of 

Theoretical and Applied Science, 4(1), 36-38. 

Tian, C., Chang, K. C., & Chen, J. (2020). Application of hyperbolic partial differential equations 

in global optimal scheduling of UAV. Alexandria Engineering Journal, 59(4), 2283-2289. 

Twizell, E.H.  (1984).  Computational method for partial differential equations.  New York:  Ellis 

Horwood.  

Wazwaz, A.M. (1995).  The decomposition method for approximate solution of Goursat problem.  

Applied Mathematics and Computation, 69(2), 299-311. 

Wazwaz, A.M. (2009).  Partial Differential Equations and Solitary Waves Theory. Beijing: Higher 

of Education Press and Springer-Verlag Berlin Heidelberg. 


