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ABSTRACT

This paper investigates a new method for solving the Goursat partial differential equation
(PDE) using a combination of the central finite difference method (FDM) and Taylor series
expansion. The study evaluates the effectiveness and accuracy of this new approach,
analyzing linear Goursat problems and conducting multiple numerical experiments. The
simulation study demonstrates that the suggested approach surpasses the existing method in
terms of performance and accuracy. Applying this proposed scheme will minimize the cost,
especially for engineers that might apply this model in solving their real-life problems.
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1. Introduction

It has been recognized that a significant proportion of differential equations, which are used to
represent real-world issues, cannot be solved using established analytical techniques. In such
circumstances, one must settle for numerical approximations of the models that can be achieved
by numerous numerical techniques of diverse characteristics (Fadugba et al., 2021). The basic
form of the Goursat partial differential equation problem is as follows (Wazwaz, 1993):
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uy = f(x y,uu,uy)
u(x,0)=g(x), u(0,y)=m(y) 1
6(0) =m(0) = u(0,0) 1)
0<x<a, 0<y<b.

where u,, is the mixed derivative in space x and y and f (x, y,u,ux,uy) is a function of the

two independent variables x and y, the dependent variable u and the derivative terms U, and U, .

It appears in a variety of scientific and technological fields. There are researchers such as
(Son & Thao, 2019; Tian et al., 2020; Mokdad, 2021) studied the applications of the Goursat
problem in the trajectory of an economic dynamics, global optimal scheduling, geoscience, bio-
medical engineering and Nordstrém-like black hole.

Several techniques have been suggested such as Newton-Cotes Integration (Deraman &
Nasir, 2015), reduction differential transform (Naseem, 2022), the fuzzy transform (Saharizan &
Zamri, 2019; Kim Son et al., 2021), iterative regularization (Meziani et al., 2021), Signature
Kernel (Salvi et al., 2021) and method of transmutation operators (Sitnik & Karimov, 2023;
Karimov & Yulbarsov, 2023). The established FDM is provided by and averages the functional
values as (Nasir & Ismail, 2013):

ui+1,j+1 +ui,j _ui+1,j _uivj+1 1
he :Z(fiu,m + fi.j + fi+1,j + fi,j+1)v

)

where h represents grid size.

Initially, second-order linear and nonlinear hyperbolic Goursat PDEs were solved using the
FDM (Pandey, 2014a; 2014b; Nasir & Ismail, 2012; 2013). A deeper understanding and
improvements of these schemes will improve the mathematical modelling of problems where the
Goursat problem arises. However, the numerical schemes for solving Goursat problems deal with
difficulties to preserve the linearity of approximate numerical solutions. Therefore, there is a
motivation to develop a better method with higher accuracy and preserve linearity for the Goursat
scheme. Moreover, Taylor series expansion can be an alternative method to resolve the problem
(Tailor & Bhathawala, 2011; Jacquemin et al., 2020). Hence, we introduce a new approach named
central difference - Taylor series expansion method (CD-TSE). The proposed scheme combines
the central FDM with higher-order Taylor series expansion to solve homogenous and
inhomogeneous linear Goursat PDE problems.

Section 2 (methodology) will formulate the CD-TSE, and Section 3 (results and discussions)

will apply it to three different classes of linear Goursat problems. Furthermore, the numerical
result of CD-TSE will be given at the last section and conclusion.

2. Methodology

The central difference is one of the basic formulae of FDM for the approximation of the first-order
derivatives of a function. The second-order partial derivatives by using FDM is constructed based
on the Taylor series expansion and written in the following form (Twizell, 1984):

1 u(x+h,y+h)—u(x+h,y—h)
o _4hz{—u(x—h,y+h)+u(x—h,y—h)+0(h)}
©)

U

known as central difference formulas for 3
X

at (x, y)with the truncation error, O(h) and step

size, h.

The next step is to adopt difference formulas (3) into the left-hand side of the standard
form of Goursat problem (1) is called discretizing process. Hence, the derivation of Goursat
schemes can be written as shown below:
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1 |u(x+h,y+h)—u(x+h,y—h) _¢
207 | ~u(x—h, y +h)+u(x—h,y—h)+0(h) |~ (ey.uu.u,)
4)
where f(x, y,u,u,,u)can be computed by referring to the selected Goursat problems and
approximated by using the higher-order Taylor series expansion.

Moreover, the general form of the Taylor series expansions for two variables functions
f(x,y), and can be written as (Pantaleén & Ghosh, 2015):

k1.0 oY
f AX, Ay)= > —| AX—+Ay— | f ,
(e any e o) =32 T oy ST e ()

®)
where, n is the order starting from 0 till k™ term, Ax and ayare the step size and f(x,,y,) is an
origin.

Thus, this paper will use up to fiftieth terms (k is 15) of the Taylor series and (5) can be
written as:

0 0
f (% +AX, Y, +Ay) = f (xo,y0)+(Ax6X+AyayJ f (X0 Yo) (6)
1( , 8 d , O
+—| AX" —— 4+ 2AXAy —— + Ay" —— | f (X,
2![ oxOx Yoxay Y 8y6yj 0o:%)
L Ax3a§a +AY® 6y66yay
XOXOX
30 5 5 f (X, o)+
| +3Ax% Ay +3AXAY? ———
OXOXoy OXoyoy

By letting x=x, +Ax, y=Y,+Ay and step size Ax=Ay=h. Hence, the right-hand side of the
standard form of Goursat problem (1) can be approximated as shown below:

f (% +hy,+h)=f(x,y,uu,u)=f(x-hy-h)

+h[f (x=h,y—m]+h[f, (x=h,y-h)] @
1| f (x=h,y—h)+h*f (x—h,y—h)

+2!L2h2fxy(x—h,y—h) }

+1{h%‘m(x—h,y—h)+h3fwy(x—h,y—h) }r

31[+3n°f,, (x—h,y—h)+3k*f,, (x—h,y—h)

XXy

Therefore, the next stage is to adopt central difference formulas (3) and approximate via Taylor
series expansion into the left and right-hand sides of (1), respectively.
Hence, the derivation of linear Goursat schemes using CD-TSE can be written as given:

u(x+h,y+h)=u(x+h,y—h)+u(x—h,y+h)—u(x—h,y—-h)
f(x—h,y=h)+h[f (x=h,y-h)]
+h[ f,(x=h,y-h)]

1 [h*f, (x=h,y—h)+h*f (x—h,y—h)
+2!L2h2fxy(xh,yh) }
+1{hafxxx(x—h,y—h)+h3fyyy(x—h,y—h) }
311 +3n*f (x=h,y—h)+3Kk*f (x—h,y—h)

(8)

+4h?

By rewriting in index form and shifting i -»i+1, j— j+1 will yields:
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Uisz jr2 = Uisz,j TUiju2 — Ui
2 2 2 2
fij+h3fij+ifij+i 0 fij+a fij+2a fi 9
‘ o o 210 6,0, 7 0,0; 0;0; "
+4h? +0(h).
h| &° ol ol ol
+— f + f,,+3 f,.+3 fii |+
3¢90, "' 0,00, V' o900, " 400, "

In the next section, the approximation (9) will be tested into homogenous and inhomogeneous
linear Goursat PDE problems.
3. Results and Discussions
Example 1:
Take into consideration the Goursat linear homogeneous problem.

u, =U,
u(x,0)=¢e*,
u@,y)=e’,
0<x<4,0<y<4.

(10)

The exact to the problem stated in (10) is u(x, y) =e*"Y (Naseem, 2022).

By applying formula (9) to problem (10), differentiating the derivative terms and adopting
the initial condition. Thus, the new scheme using CD-TSE formula can be rewritten as:

u :u|+2,1 +u|,]+2 7ui,]

I () S 0L1) R

1+|h4;]h+3T+ZT+(u)h 2 Lo (]_1)
ROMOMOTOROO
6 6 2 2

i+2,j+2

+4h?

Comparative study between scheme (2) versus CD-TSE scheme (13) have been done for problem
(10).

Table 1. Approximate numerical solution at h =1 for problem (10).

Scheme u(x, y)
u(1,1) u(2,2) u(3,3) u4,4)
Exact 7.3891 54.5982 | 4.0343e+02 2.9811e+03
Standard (2) 8.0609 68.7114 | 5.9443e+02 5.1802e+03
CD-TSE (11) 8.0609 43.3343 | 3.3928e+02 2.1882e+03

Table 2. Average relative errors for problem (10).

Step size (h) Standard (2) CD-TSE (11)
1 3.2861e-01 1.8976e-01
0.8 1.7329¢e-01 1.1441e-01
0.4 3.2760e-02 2.8814e-02
0.2 7.3749e-03 7.3720e-03

The approximate solution and average relative errors at selected step sizes are illustrated in
Table 1 and Table 2. The average relative error in Table 2 becomes smaller as the grid size
decreases for both schemes and CD-TSE is powerful than standard scheme. The numerical
experiments signify that, the accuracy level of the CD-TSE scheme (11) is higher than standard
scheme (2) for linear homogeneous Goursat problem (10). Furthermore, the proposed scheme is
also preserving the linearity.

1771



Deraman et al., Malaysian Journal of Computing, 9 (1): 1768-1775, 2024
Example 2:

Consider the following linear inhomogeneous Goursat problem

U, =u-y,
u(x,0)=¢*,
u@,y)=y+e’,
0<x<4,0<y<4.

(12)

The exactis u(x,y)=y+e*” (Ahmad & Mustaq, 2015).
By applying formula (9) to problem (12), differentiating the derivative terms and adopting
the initial condition. Thus, the new scheme using CD-TSE formula can be rewritten as:

Uizji2 = Uiy TU u

1+ih+2jh+ﬂ+m+(ij)h2 (13)
120 PR . |rom).

0G0y’ (i) ()G’

6 6 2 2

Comparative study between scheme (2) and scheme (13) have been done for problem (12).
The approximate solution and average relative errors at selected step sizes are illustrated in Table 3
and Table 4.

Table 3. Approximate numerical solution at h =1 for problem (12).

Scheme u(x, y)
u(1,1) u(2,2) u(3,3) u4,4)
Exact 8.3891 56.5982 4.0643e+02 2.9850e+03
Standard (2) 9.0610 70.7114 5.9743e+02 5.1842e+03
CD-TSE (13) 9.0609 49.3343 3.5028e+02 2.2242e+03

Table 4. Average relative errors for problem (12).

Step size (h) Standard (2) CD-TSE (13)
1 3.2330e-01 1.6859¢-01
0.8 1.7012e-01 9.0166e-02
0.4 3.2032e-02 1.9896e-02
0.2 7.1979e-03 7.1645e-03

The average relative error in Table 4 becomes smaller as the grid size decreases for both and
CD-TSE is superior to standard scheme. The numerical experiments signify that, the accuracy
level of the CD-TSE scheme (13) is higher than standard scheme (2) for linear inhomogeneous
Goursat problem (12). Furthermore, the proposed scheme is also preserving the linearity.

Example 3:
Consider the following linear inhomogeneous Goursat problem.

Uy, =U+4xy—xy?
u(x,0)=¢*
u(0,y)=e’
0<x<4,0<y<4.

(14)

The problem has been used by (Wazwaz, 2009). The problem's exact solution is u(x,y)=xy* +e*
(Datta et al., 2021).
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By applying formula (9) to problem (14), differentiating the derivative terms and adopting

u

+4h?

1+ih+jh+@+@+(ij)h2
6 6 2
L(i(n)° (i) (in)
2 24 24
+(ih)3 (jh) N (ih)(ih)’ +5(ih)2 (jh)y’
6 6 4

+0(h).

the initial condition. Thus, the new scheme using CD-TSE formula can be rewritten as:

(15)

Below are the approximate numerical solutions and average relative errors at various

Table 5. Approximate numerical solution at h =1 for problem (14).
Scheme u(x, y)
u(1,1) u(2,2) u(3,3) u(4,4)
Exact 8.3891 7.0598e+01 4.8443e+02 3.2370e+03
Standard (2) 6.3943 4.4119e+01 3.1079e+02 2.4908e+03
CD-TSE (15) 6.3943 5.9334e+01 3.7435e+02 2.4442e+03
Table 6. Average relative errors for problem (14).
Step size (h) Standard (2) CD-TSE (15)
1 2.6296e-01 2.1293e-01
0.8 2.4627e-01 1.4867e-01
0.4 1.8820e-01 4.0671e-02
0.2 1.5288e-01 1.0175e-02

selected grid points for the problem (14) results comparing the standard scheme (2) and CD-TSE
scheme (15).

The approximate solution and average relative errors at selected step sizes are illustrated in
Table 5 and Table 6. The average relative error in Table 6 becomes smaller as the grid size
decreases for both and hence CD-TSE is efficient than standard scheme. The numerical
experiments signify that, the accuracy level of the CD-TSE scheme (15) is higher than standard
scheme (2) for linear inhomogeneous Goursat problem (14). Furthermore, the proposed scheme is
also preserving the linearity.

4, Conclusions

The aim of this paper was to create novel approaches for solving linear Goursat partial
differential equations (PDES) using the central finite difference method in combination with
Taylor series expansion. Our goal was successfully accomplished, resulting in the CD-TSE
scheme, which proved to be highly efficient and precise in solving both homogeneous and
inhomogeneous linear Goursat PDE problems. The numerical analysis showed that the CD-TSE
scheme outperformed the standard method (previous study), and its greatest advantage was its
ability to preserve linearity effectively. There are many applications involving Goursat partial
differential equation problems found in various fields of sciences and mathematical engineering.
Applying this proposed scheme will minimize the cost, especially for engineers that might apply
this model in solving their real-life problems. The cost will be calculated in terms of derivation
time, running time, software development, energy, and production.
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