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Abstract— neural network classifiers are one 

among the popular modes in the design of brain 

machine interface (BMI). In this study two novel 

dynamic neural network classifier designs for a 

four-state BMI are presented. Dynamic neural 

network based design for a four-state BMI to 

drive a wheelchair is analyzed. Motor imagery 

signals recorded noninvasively at the 

sensorimotor cortex region using two bipolar 

electrodes is used in the study. The performances 

of the proposed algorithms are compared with a 

static feed forward neural classifier. Average 

classification performance of 97.7% was 

achievable. Experiment results show that the 

distributed time delay neural network model out 

performs the layered recurrent and feed forward 

neural classifiers for a four-state BMI design.  

 

Index Terms—Brain Machine Interfaces, 

Dynamic Neural Networks, EEG Signal 

Processing  

I. INTRODUCTION 

MI systems help individuals to send 

commands to electronic devices only by 
means of brain activity. Such interfaces 

can be considered as being the only means of 

communication for people with motor 

disabilities [1]. BMI systems should be able to 

identify  the   different   brain   activity  patterns  

produced by the user. This identification relies 

on a classification algorithm.  
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Classification algorithms should deal with 

some critical feature properties such as poor 

signal to noise ratio, high dimensionality,  time 

variation of specific brain patterns, non-

stationary signals and small training sets. Many 

classifiers have been verified in BMI design; 

classifier taxonomy can be broadly grouped as, 

generative versus  

discriminative; static versus dynamic; stable 
versus unstable and regularized [2].                                                                                                           

In this paper we present two classification 

algorithms using dynamic neural networks 

which overcome the drawback of the multilayer 

perceptrons where temporal information of the 

EEG is not considered for classification.  

 

The first algorithm uses layered recurrent 

neural network architecture, while the second 

algorithm uses a distributed time delay neural 

network. The performances of the proposed 
algorithms are compared with a static feed 

forward neural classifier to validate the 

suitability of the classifiers in BMI design. 

A synchronous experiment is used in this 

study, to analyze translation of brain activity 

into control signals to drive a wheelchair. 

Subject’s motor imagery of left and right hand 

movements are recorded noninvasively for four 

mental tasks to design a four-state BMI. Two 

features sets are extracted from the EEG. The 

goal is to determine best classification 

algorithm and the optimal feature set. 
 

A. Related Work 

Classifiers used in BMI research can be 

divided into five categories: linear classifiers, 

neural networks, nonlinear Bayesian classifier, 

nearest neighbor classifiers and combination of 
classifiers [2]. Here our focus is on neural 
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network classifiers. Linear classifiers and 

neural networks are the most used classifiers in 

BMI.  

 Among several architectures the multilayer 

perceptron (MLP) is the most widely used in 

BMI design based on EEG. MLP are universal 
approximators, i.e. when composed of enough 

neurons and layers they can approximate any 

continuous function. Added to the fact that they 

can classify any number of classes, this makes 

MLP very flexible classifier, consequently 

MLP has been used to almost all BMI problems 

such as binary or multiclass, synchronous or 

asynchronous BMI. However the fact that MLP 

are universal approximators makes these 

classifiers sensitive to overtraining, especially 

with such noisy and non-stationary data as 

EEG. Therefore careful architecture selection 
and regularization is required [2].   

A Gaussian classifier specifically created for 

BMI is reported in [3]. Each unit of this NN is a 

Gaussian discriminant function representing a 

class prototype. The classifier is embedded in a 

portable  brain computer interface called ABI, 

the classifier recognizes three mental tasks , 

relax, left and right the correct recognition is 

around 70%, one subject after five days of 

training  achieved 93% , 61 % and 85% for 

relax, left hand and right hand movements 
respectively. 

Other neural networks used marginally are 

learning vector quantization neural network 

with 60% for MI based three class BCI(Brain 

computer interface)[4], fuzzy art map neural 

network with 94.43% performance for five 

mental task based classifier [5], finite impulse 

response neural network with 87.4 % 

performance for MI based two class 

synchronous BCI[6], time delay neural network 

with 90% performance  for movement intension 

based BCI, RBF neural network with 77.8 % 
performance  for five mental task based BCI 

[7]and Recurrent neural networks with 80% for 

three mental task based BCI [8]. A detailed 

comparison of the above neural network based 

BCI are given in [2]. 

 

II. METHODS 

A. Experiment Paradigm  

BMI signals are recorded using a synchronous 

protocol, from 10 voluntary subjects. The 

subject is seated in a comfortable chair in front 

of a computer monitor. During the recording 
the subject is instructed not to move and to 

keep his hands relaxed. The MI tasks are cued 

by a visual stimulus presented on the monitor.  

The subject performs four tasks namely, relax, 

forward, left and right; the relax task is the 

baseline measurement task; for forward, left 

and right tasks an arrow appears on the 

monitor. Data are collected for two sessions, 

each session has five trials per task, and each 

task data is recorded for 10s. The imagination 

involves hand movements and not finger 

movements as in some BCI paradigms. The 
protocols for the four MI tasks are detailed 

below: 

Task 1 – Relax: The subject is asked not to 

perform any specific task, but to relax as much 

as possible and think of nothing in particular. 
This task is considered as the baseline task and 

used as a stop control. 

Task 2 – Forward: The subject is requested to 

fixate on the monitor showing an ‘up arrow’, 

the subject is requested to imagine moving both 

arms in a forward direction and the subject is 

requested to hold the thought for ten seconds. 

This is similar to using a games joystick for 

forward direction. 

Task 3 – Left: The subject is requested to fixate 

on the monitor showing a left arrow, the subject 

is requested to imagine moving their left hand 
in the direction of the arrow and the subject is 

requested to hold the thought for ten seconds.  

Task 4 – Right: The subject is requested to 

fixate on the monitor showing a right arrow, the 

subject is requested to imagine moving their 

right hand in the direction of the arrow, and the 

subject is requested to hold the thought for ten 

seconds.  

 

B.  EEG Recording.  

An AD Instuments Power Lab amplifier is 
used in this experimentation. EEG is recorded 

using two gold plated cup bipolar electrodes 
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placed at the C3 and C4 locations on the 

sensorimotor cortex area as per the 

International 10-20 Electrode Placement 

System [9], Figure 1 shows the electrode 

placement locations. A digital band pass filter 

(0.5 Hz to 100 Hz) is applied to the raw signal. 
The EEG signals are amplified and sampled at 

200 Hz. The experiment consists of ten trials 

per task. Each trial lasts for 10 seconds.  The 

subjects take breaks for 10 minutes between 

trials. All trials for a single subject were 

conducted on the same day.  10 healthy subjects 

aged between 16 and 46 participated in the 

study, at the time of data recording the subjects 

are free from illness or medication. 40 MI 

signals are collected from C3 and C4 electrodes 

for the four motor imagery tasks from each 

subject. For this experiment artifacts such as 
eye blinks are not removed.  

 

   

 

  
 

 

 

 

 

 

Fig.1. Electrode positions for data collection 

 

To train and test classifiers a feature set is 

required to characterize the EEG. The EEG 

motor imagery is characterized   using band 

power and parseval energy density methods; the 

two methods use the EEG time series to 

determine the features to classify the signals 

into the four mental states. 

 

C. Feature Extraction. 

We chose two feature sets to test the neural 

networks. The first one is the more 

conventional band power features of the mu 

and beta rhythms, and the other is the extraction 

of energy density spectrum using the parseval 
theorem. To extract the band power features, 

the raw EEG signals are segmented into 0.5s 

windows with an overlap of 0.25s. Segmented 

data are band pass filtered between 8 Hz and 30 

Hz to obtain the mu and beta frequencies. A 

logarithmic transform is performed on the band 

power data. 195 features from five frequency 

components (8-10Hz, 10-12Hz, 13-15Hz, 16-
18Hz and 19-30Hz) are extracted from the 10 

second signals. 

The second feature set is also obtained from 

the 0.5s segmented signals, by extracting the 

energy density spectrum features using the 

Parseval theorem [10] for each segment. The 
theorem states that the consumptive energy of 

discrete signal is equal to the square sum of the 

spectrum coefficients of the Fourier transform 

in the frequency domain. 39 features are 

extracted from a single task signal.                                                                                                 

The features are normalized using a binary 

normalization algorithm [11] and are used as 

input for the neural classifier which is trained to 

classify the signals into one of the four mental 

states of the BMI. 

 

III. DYNAMIC NEURAL NETWORKS 

Neural networks can be classified into 

dynamic and static categories. Static (feed 

forward) networks have no feedback elements 

and contain no delays; the output is calculated 

directly from the input through feed forward 

connections. In dynamic networks, the output 

depends not only on the current input to the 

network, but also on the current or previous 

inputs, outputs, or states of the network. The 

dynamic network has memory. Its response at 

any given time depends not only on the current 

input, but on the history of the input sequence. 
If the network does not have any feedback 

connections, then only a finite amount of 

history will affect the response. 

 

A.  Feed forward architecture  

 

The topology of feed forward networks 

consists of a set of neurons connected by links 

in a number of layers. The basic configuration 

usually consists of an input layer, a hidden 

layer and an output layer. Feed forward 
networks implant fixed weight mapping from 

the input space to the output space. The weights 
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of a feed forward network are fixed after 

training, so the state of any neuron is solely 

determined by the input-output pattern and not 

the initial and past states of the neuron, that is 

there is no dynamics; consequently such 

networks are classified as static neural network. 
The advantage of the static-feed forward neural 

network is that the network can be easily built 

with simple optimizing algorithm and is the 

most popular architecture in use today [12]. 

One important drawback of these networks is 

that the network cannot cope well with major 

changes that were never learned in the training 

phase. 

 

 

B. Feedback architecture  

 

Neural networks with feedback architecture, 

which has feedback connections from the 

output layer to the input layer or from the 

hidden layer to the input layer. Since neurons 

have one or more feedback link whose state 

varies with time, the feedback architecture is 

called a dynamic neural network. The presence 

of a feedback link has a profound impact on the 

learning capability of the network and on its 

performance. Because these networks have 

adjustable weights the state of its neuron 
depends not only on the current input signal but 

also on the previous state of the neuron.  

The advantage of the dynamic neural 

network is that it can effectively decrease the 

network’s input dimension and therefore the 

training time. Dynamic networks are generally 

more powerful than static networks (although 

somewhat more difficult to train), because 

dynamic networks have memory, they can be 

trained to learn sequential or time-varying 

patterns [12]. 

 
C. Layered recurrent neural network (LRNN)  

This network is a modified version of an 

Elman network. In the LRNN, there is a 

feedback loop, with a single delay, around each 

layer of the network except for the last layer. 

The LRNN has an arbitrary number of layers 

and to have arbitrary transfer functions in each 

layer. The network is trained by a Bayesian 

regulation back propagation algorithm [13].  

D. DISTRIBUTED TIME DELAY NEURAL NETWORK 

(DTDNN).  

 

 The DTDNN distributes the tapped delay 

lines throughout the network i.e. the first layer 

has weights coming from the input with the 

specified input delays.  Each subsequent layer 

has a weight coming from the previous layer 

and specified layer delays.  All layers have 

biases.  The last layer is the network output. 

The network is trained by a resilient back 

propagation training algorithm [13].  

 

 
E. Feed forward Neural Network (FFNN). 

 

 A static three layered FFNN is modeled to 

compare the performance of the dynamic neural 

networks. The training of the FFNN is 

accomplished by using Levenberg-Marquardt 

back propagation algorithm. Back propagation 

involves two phases [11, 14].  

 Forward Phase. During this phase the free 

parameters of the network are fixed and the 

input signal is propagated through the network 
layer by layer. The forward phase finishes with 

the computation of an error signal. 

  

          ei = di - yi                                            (1)    

            

 where di  is the desired  response and yi is the 

actual output produced by the network in 

response to the input xi. 

Backward Phase. During this second phase, the 

error signal ei is propagated through the 

network in the backward direction. It is during 

this phase that adjustments are applied to the 
free parameters of the network so as to 

minimize the error ei   in a statistical sense. 

 

DI. EXPERIMENTS 

Four dynamic neural networks are modeled 

using the band power and parseval feature data. 

Two static neural networks are also modeled 
using the same data sets. For the band power 

features the classifiers are modeled using 195 

input neurons 4 hidden neurons and 4 output 

neurons to indicate the four MI tasks. The 

numbers of hidden neurons are chosen 
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experimentally. Training is conducted until the 

average error falls below 0.01 or reaches a 

maximum iteration limit of 1000. The parseval 

feature based classifiers are modeled with 39 

input neurons, 4 hidden neurons and 4 output 

neurons. Training is conducted until the 
average error falls below 0.01 or reaches a 

maximum iteration limit of 1000.  

In all the six classifiers, mean square error is 

used as a stopping criterion. 400 data samples 

are employed in this experiment. The training 

and testing samples is normalized by adopting a 

binary normalization algorithm [11]. Selection 

of the training and testing data is chosen 

randomly.  All four classifier models are trained 

with 80% data samples and tested with 20% 

data samples for a testing error tolerance of 0.1.  

  

DII. RESULTS AND DISCUSSION 

The dynamic and static architectures, training 

methods and training rates were determined 

using a trial and error approach. Several 

attempts were made until the proper learning 

rate; number of neurons in each hidden layer 

was reached. A training approach which 
combines adaptive learning with momentum 

training as the learning rate and four neurons in 

the hidden layer were selected. The network 

architecture selected after these attempts has 

produced the minimal error in both training and 

testing data. 

The Classification performance of the 

proposed dynamic and static models for a four 

state BMI are shown in Tables 1 to 3. Table 1 

shows the performance of the LRNN model for 

band power and Parseval features as the test 

data. The minimum, mean and maximum 
recognition accuracies are tabulated for all the 

10 subjects. Similarly Table 2 and 3 shows the 

performance of the DTDNN and FFNN 

respectively.  Table 4 shows the comparison of 

the training and testing time for the LRNN, 

DTDNN and FFNN classifier models. 

The average classification results of the 

LRNN are 93% and 94% for the band power 

and parseval features respectively, the DTDNN 

average classification results are much higher at 

97.65% and 97.7% for the band power and 
parseval features respectively.  Examining the 

performance of all the network models it is seen 

that performance of the static FFNN models is 

inferior to that of the dynamic networks with 

average classification rates at 89.4% and 92.7% 

for the band power and parseval features 

respectively. The parseval features outperform 
the band power features in terms of average 

classification and training time. The DTDNN 

with parseval features is found to be the best 

classifier model among the six models designed 

for a four state BMI, with average efficiency of 

97.7% and training time of 2.9s.  

 

DIII. CONCLUSION 

Six neural network classifiers for a four-state 

BMI to drive a wheelchair are proposed. Both 

static and dynamic network models are 

analyzed for four motor imagery tasks acquired 

from the motor cortex area. Network models 

were designed using two feature sets. Data from 

ten subjects were used in the experimentation.  

Comparisons of the performance of static and 

dynamic network model results are presented. 

First both static and dynamic network models 

yield a good classification with average 
classification performance ranging from 89.4% 

to 97.7%. This was achievable from EEG data 

collected from 10 trails only.  Dynamic network 

models perform better than static models. Of 

the two features sets used the parseval features 

are found to be more suitable than band power 

features. The results suggest that the DTDNN 

network model with parseval features is best 

suited for a four state BMI design. The results 

obtained are comparatively better in 

comparison to Elman recurrent networks and 

functional link network proposed for MI signals 
in our earlier work in [15]. 

The experiment results also validate that the 

proposed algorithms have the ability of 

recognizing four mental states from the MI data 

collected with only two electrodes. No artifacts 

were removed from the EEG data, which shows 

the robustness of the algorithm. The output of 

the classifiers can be translated to control the 

navigation of a power wheelchair for three 

directional movements and to stop the 

wheelchair. However real-time experiments are 
to be conducted to verify the applicability of the 
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proposed algorithms for actual navigational 

control of a wheelchair. This is an area of our 

current research.  BMI has potential 

applications beyond rehabilitation and can be 

used by normal individuals to control their 

environment 
 

 

TABLE 1 

 CLASSIFICATION PERFORMANCE OF THE LRNN 

Subject 

Recognition Accuracy in % 

Band Power Features Parseval Features 

Min Mean Max Min Mean Max 

1 97.5 97.5 97.5 90 90 90 

2 82.5 82.5 82.5 95 95 95 

3 92.5 92.5 92.5 97.5 97.5 97.5 

4 97.5 97.5 97.5 90 90 90 

5 87.5 87.5 87.5 97.5 97.5 97.5 

6 97.5 97.5 97.5 97.5 97.5 97.5 

7 97.5 97.5 97.5 92.5 92.5 92.5 

8 90 90 90 95 95 95 

9 87.5 87.5 87.5 97.5 97.5 97.5 

10 100 100 100 87.5 87.5 87.5 

 

 

 
TABLE 2  

CLASSIFICATION PERFORMANCE OF THE DTDNN 

Subject 

Recognition Accuracy % 

Band Power Features Parseval Features 

Min Mean Max Min Mean Max 

1 90 96.75 100 97.5 99.75 100 

2 85 96.75 100 92.5 97 100 

3 97.5 99.5 100 92.5 97.75 100 

4 87.5 98 100 97.5 99.75 100 

5 95 99.25 100 92.5 98.5 100 

6 65 95 100 80 94.75 100 

7 97.5 99.75 100 87.5 96.25 100 

8 95 99 100 95 98.5 100 

9 90 97.5 100 92.5 97.75 100 

10 85 95 100 87.5 97 100 
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TABLE 3  

CLASSIFICATION PERFORMANCE OF THE FFNN 

 

 

 

TABLE 4 

 TRAINING AND TESTING TIME FOR THE SIX NEURAL CLASSIFIER MODELS 

 

Subject 

LRNN FFNN DTDNN 

Band Power 

Features 

Parseval 

Features 

Band Power 

Features 

Parseval 

Features 

Band Power 

Features 

Parseval 

Features 

Train 

Time  

Test  

Time  

Train 

Time   

Test 

Time  

Train 

Time  

Test 

Time  

Train 

Time  

Test 

Time  

Train 

Time  

Test 

Time  

Train 

Time  

Test 

Time  

1 21.53 0.11 7.96 0.11 38.56 2.38 4.86 1.74 3.7 0.13 2.92 0.12 

2 22.88 0.11 9.21 0.11 9.93 2.25 12.96 2.3 3.37 0.12 2.82 0.12 

3 30.79 0.11 5.34 0.11 11.87 2.12 4.0 1.76 3.37 0.12 3.84 0.10 

4 18.11 0.11 10.69 0.11 22.6 1.23 6.65 1.91 3.10 0.10 2.77 0.10 

5 21.03 0.12 5.54 0.11 61.74 1.31 1.74 1.11 3.08 0.11 2.97 0.11 

6 22.61 0.11 7.58 0.11 72.03 1.22 7.42 1.22 2.92 0.10 3.09 0.10 

7 24.52 0.11 9.59 0.10 83.31 1.18 2.73 1.12 10.3 0.11 2.85 0.10 

8 20.21 0.12 7.58 0.11 10.10 1.23 1.92 1.17 3.34 0.10 2.82 0.10 

9 39.3 0.10 7.05 0.11 5.10 1.19 39.72 1.12 2.89 0.11 3.05 0.11 

10 24.1 0.12 5.48 0.11 39.71 1.2 2.35 1.15 3.10 0.11 2.85 0.12 

Subject 

Recognition Accuracy % 

Band Power Features Parseval Features 

Min Mean Max Min Mean Max 

1 60 95.31 97.5 90 90 90 

2 82.5 83 85 47.5 89.75 97.5 

3 92.5 93.25 95 97.5 97.5 97.5 

4 30 89.5 97.5 42.5 85.25 90 

5 87.5 88.5 90 97.5 97.5 97.5 

6 52.5 84 97.5 97.5 97.5 97.5 

7 45 90.25 97.5 92.5 93 95 

8 90 90 90 95 95.75 100 

9 87.5 87.75 90 57.5 92 97.5 

10 25 92.5 100 87.5 89.5 92.5 
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