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ABSTRACT 

This paper presents the stability analysis of a proposed scheme of order five (FCM) for first 
order Ordinary Differential Equations (ODEs). The proposed FCM is derived by means of an 
interpolating function of polynomial and exponential forms. The properties of FCM were 
discussed extensively. The linear stability of FCM in the context of the Third Order One-Step 
Method (TCM) and Second Order One-Step Method (SCM) for the solution of initial value 
problems of first order differential equations is presented. The stability region of FCM, TCM 
and SCM is investigated using the Dahlquist’s test equation. The numerical results obtained 
via FCM are compared with TCM and SCM. Moreover, by varying the step length, the accuracy 
and convergence of the methods in terms of the final absolute relative error are measured. The 
results show that FCM converges faster and more stable than its counterparts.   

Keywords: Fifth order scheme, final absolute relative error, initial value problem, second order 
method, stability, third order method.   
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1. Introduction  

Most of the problems of mathematical physics are formulated in the form of differential 
equations. Such physical models represent future estimation for any real-world situation based 
on the data available in the past and present as detailed in (Bird, 2017; Butcher, 2016; Jain, 
2003; Lambert, 1991; Lambert, 1973). It is a known fact that a huge number of differential 
equations that model real life problem cannot be solved via well-known analytical methods. In 
such situations, one has to compromise at numerical approximate solutions of the models 
achievable by various numerical techniques of different nature (Qureshi & Fadugba, 2018). 

In this paper, the stability analysis of FCM in the context of TCM (Fadugba & Idowu, 
2019) and SCM (Fadugba & Falodun, 2017) is presented and investigated. The rest of the paper 
is outlined as follows; Section Two presents the problem formulation and derivation of FCM. 
Section Three presents a brief review of two existing methods: TCM and SCM. The stability 
analysis of the methods is examined in Section Four. Section Five presents implementation of 
FCM, discussion of results and concluding remarks. 
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2. Problem Formulation and Derivation of the One-Step Scheme of Order Five 

2.1 Problem Formulation 

Consider an initial value problem of first order ordinary differential equation of the form: 

   (1) 
The existence and uniqueness of solution of (1) have been guaranteed via the Lipschitz 
condition on the interval D = [a, b].  The exact solution of (1) at 

 
is given by . 

2.2 Derivation of a Fifth Order One-Step Scheme 

Consider an interpolating function of the form: 

 
(2) 

here are undetermined constants and is a constant. The integration 

interval of is defined as . The step length is defined as:  

 
  (3) 

where N is the number of integration steps. The mesh point is defined as:  

   (4) 

or 

   (5) 

Expanding (2) at the points and yields: 

 
  (6) 

and 

   (7) 

respectively. Differentiating (6) five times and setting:  

   (8) 

yields: 

   (9) 
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(12) 

 
(13) 

Equations (9)-(13) form a system of linear equations of the form: 
 (14) 

where, 

   
(15) 

 
(16) 

and  

   
(17) 

 
Solving the system of linear equations in (14), one gets: 
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Subtracting (6) from (7) yields: 

 
(23) 

Using (4) and (5), with , yields: 

 
(24) 

 
(25) 

 (26) 

 (27) 

 (28) 

 (29) 

 (30) 

 
Using (24) into (18), (19), (20), (21) and (22) yield: 

 
(31) 
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 (35) 

Suppose that: 

 (36) 
 
 
By using (23), (31), (32), (33), (34) and (35), (36) yields: 
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(37

) 

Setting:  

 (38) 

 

(39) 

 

(40) 

 

(41) 

 

(42) 

Therefore,  

 

(43) 

Equation (43) is known as FCM for the solution of initial value problems of ordinary differential 
equations. The local truncation error, order of accuracy, consistency, zero stability and 
convergence of (43) were summarized in the following remarks. 

Remarks: 

a. Local Truncation Error and Order of Accuracy 

According to Fadugba & Idowu (2019), the analysis of the local truncation error determines the 
order of convergence of any numerical integration method designed for the numerical solutions 
of initial value problems in ordinary differential equations. In order to check the order of the 
method, the algorithm of the numerical method is subtracted from the Taylor’s series expansion 
for in powers of h and by means of the localizing assumptions.  
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Consider the Taylor’s series expansion of the form: 

 

(44) 

Define the local truncation error for (43) as: 

 

(45) 
Substituting (43) and (44) into (45) yields: 

 

(45) 

 
Simplifying further and using (38), (39), (40), (41) and (42), one gets: 

 

(47) 
where, 

 

(48a) 

and  

 

(48b) 

By means of the localizing assumptions, (48b) yields: 

 

(49) 

By using (48a) and (49), (47) becomes: 

 

(50) 

Equation (50) is the local truncation error for FCM. It also shows that the scheme has accuracy 
of order five.  

...))(,(
120

))(,(
24

))(,(
6

))(,(
2

))(,()()(

)4(
5

)3(
4

)2(
3

)1(
2

+++

+++=+

nnnn

nnnnnnnn

xyxfhxyxfh

xyxfhxyxfhxyxhfxyhxy

1)( +-+= nnTE yhxyL

( )54321

)4(
5

)3(
4

)2(
3

)1(
2

12

...))(,(
120

))(,(
24

))(,(
6

))(,(
2

))(,()(

KKKKKh

yxyxfhxyxfh

xyxfhxyxfhxyxhfxyL

nnnnn

nnnnnnnTE

++++-

-+++

+++=

BALTE -=

...))(,(
120

))(,(
24

))(,(
6

))(,(
2

))(,()(

)4(
4

)3(
4

)2(
3

)1(
2

+++

+++=

nnnn

nnnnnnn

xyxfhxyxfh

xyxfhxyxfhxyxhfxyA

[ ])4(4)3(3)2(2)1( 52060120
!5 nnnnnn fhfhfhhffhyB +++++=

))(,(
120

))(,(
24

))(,(
6

))(,(
2

))(,()(

)4(
4

)3(
4

)2(
3

)1(
2

nnnn

nnnnnnn

xyxfhxyxfh

xyxfhxyxfhxyxhfxyB

++

+++=

...))(,(
120

)5(
6

+= nnTE xyxfhL



 

Fadugba et. al., Malaysian Journal of Computing, 6 (2): 898-912, 2021  

 

904 

 

b. Consistency of the Scheme 

The proposed scheme is consistent, since: 

a)  It has fifth order accuracy. 

b)       (51) 

c)       (52) 

c. Zero Stability of the Scheme 

A linear multistep method of step k = 1 is said to be zero stable if the roots of the first 

characteristic polynomial of the method given by 

 

satisfy the 

Dahlquist’s root condition: 

i) all roots r satisfy  

ii) multiple roots r satisfy  
 
From (43), α1 = 1 and α0 = -1 were deduced, then the characteristic polynomial is obtained as: 

Q(a) = a-1

 

(53) 
Therefore, 

Q(a) = 0  a - 1 = 0  a = 1   

 

(54) 
Since the root of (54) satisfies the Dahlquist’s root condition. Hence, it is concluded that the  
scheme is zero stable. 

d. Convergence of the Scheme     

The convergence of the scheme is discussed as follows. From (43), the increment function is 
obtained as: 

 (55) 

 where .  

Suppose that: 
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 (57) 

Define  as a point in the interior of the interval whose end points are and . Using the 
Mean Value Theorem (MVT), one obtains: 

 (58) 

 (59) 

 (60) 

 (61) 

 (62) 

Let 

, , , ,  (63) 

 
Using (63), (58)-(62) become: 

 (64) 

 (65) 

 (66) 

 (67) 

 (68) 
 
Substituting (64)-(68) into (57), yields: 

 (69) 
 
Taking the absolute value of (69), one obtains: 

 (70) 
 
Setting L = A + RB + SC + TD+ UE, therefore: 

 (71) 
Hence, the scheme (43) is convergent and   is Lipschitzian.  
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3. A Brief Review of TCM and SCM 

The brief review of TCM (Fadugba & Idowu, 2019) and SCM (Fadugba & Falodun, 2017) are 
detailed as below. 

3.1 A One-Step Method of Order Three (TCM)  

A third order one-step method for the solution of (1) given by: 

 (72) 

was derived via the transcendental function of exponential type of the form:             

 (73) 

where  are undetermined constants. 

3.2 A One-Step Method of Order Two (SCM)  

A second order one-step method for the solution of (1) given by: 
 (74) 

was derived via the interpolating function of the form: 

 (75) 

where  are undetermined constants. 

4. Stability Analysis of the Scheme 

According to Fadugba & Qureshi (2019), a numerical method is said to be stable if it is capable 
of damping out the small fluctuations carried out in the input data. The notion of stability may 
be taken in different contexts: it may be associated with the specific numerical technique used, 
or the step size h used in numerical computations or with the particular problem being solved. 
To discuss the stability analysis of FCM in the context of TCM and SCM, consider the 
Dahlquist’s test equation given by: 

 (76) 
where is a complex constant.  
The exact solution of (76) is obtained as: 

 (77) 

Expanding (77) at the points  and , yields respectively: 
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and  
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 (80) 

Setting 

 (81) 

Equation (80) becomes: 

 (82) 

It is clearly seen that (82) is the sixth term of . Hence the stability function of (43) requires 
that: 

 (83) 
The error growth factor can be controlled by (83). Also setting in (82) and simplifying  
further, the stability region of the scheme satisfies: 

 (84) 

 
The stability functions of FCM, TCM and SCM using Dahlquist’s Test Equation are 
summarized in the Table 1.  

 
Table 1. The stability functions for FCM, TCM and SCM using Dahlquist’s Test Equation 

Method Stability Function 

FCM  

TCM  

SCM  

 
The stability regions for the stability functions as in Table 1 represented in unshaded area for 
FCM, TCM and SCM are displayed in Figure 1, Figure 2 and Figure 3 respectively. 
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Figure 1. The Stability Region (Un-shaded) for FCM 

 
 

 
Figure 2. The Stability Region (Un-shaded) for TCM 
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Figure 3. The Stability Region (Un-shaded) for SCM  

 

5. Implementation of the Scheme, Discussion of Results and Concluding Remarks 

This section presents an illustrative example, discussion of results and conclusion as follows: 

5.1 Implementation of the Scheme on Initial Value Problem of First Order Ordinary 
Differential Equation 

Consider the initial value problem of the form: 

 

whose analytical solution is obtained as:    . 

The comparative study of the results generated via FCM, TCM and SCM against exact solution 
('YXN') in the interval of integration with h = 0.1 is shown in Figure 4. 

 
Figure 4. The Comparative Study of the Results generated via FCM, TCM and SCM 
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Figure 5. The Comparative Study of the Absolute Relative Errors Incurred via FCM, TCM and SCM 

 
The comparative study of the absolute relative errors generated via FCM, TCM and SCM in 
the interval of integration with h = 0.1 is shown in Figure 5. The comparative study 
of the final absolute relative errors generated via the FCM in the context of TCM and SCM by 
varying the step length h = with  is shown in Table 2. 

 
Table 2. The Comparative Study of the Final Absolute Relative Errors generated  

via FCM, TCM and SCM with varying Step Length (h). 
 

h FCM TCM SCM 

2-1 0.00007701 0.01729036 0.13734107 

2-2 0.00000298   0.00276121 0.04397290 

2-3 0.00000010 0.00039062 0.01247877 

2-4 0.00000000 0.00005196 0.00332373 

2-5 0.00000000 0.00000670 0.00085754 

2-6 0.00000000 0.00000085 0.00021778 

2-7 0.00000000 0.00000011 0.00005487 

2-8 0.00000000 0.00000001 0.00001377 

2-9 0.00000000 0.00000000 0.00000345 

2-10 0.00000000 0.00000000 0.00000086 

The plots of Table 2 are displayed in Figure 6. It can be observed that the SCM produced the 
highest absolute relative error as compared to TCM and FCM. 

]2,0[Îx

]1,0[Îx



 

Fadugba et. al., Malaysian Journal of Computing, 6 (2): 898-912, 2021  

 

911 

 

Figure 6. The Final Absolute Relative Errors using Table 2 

5.2 Discussion of Results and Concluding Remarks 

In this paper, the stability analysis of FCM in the context of TCM and SCM for first order 
ODEs is presented. The stability functions for FCM, TCM and SCM are captured in Table 1 
using the Dahlquist’s test equation. The stability regions of FCM, TCM and SCM were plotted 
in Figure 1, Figure 2, and Figure 3 respectively. The comparative study of the results generated 
via FCM, TCM and SCM is presented in Figure 4. It is clearly seen from Figure 4 that FCM 
performs better than TCM and SCM. It is observed from Figure 5 that the absolute relative 
error curve of FCM shows that the scheme follows the curve of the exact solution elegantly.  
By varying the step length (h), the accuracy and convergence of the FCM, TCM and SCM in 
terms of the final absolute relative errors are shown in Table 2. It is also observed from the 
Figure 6 that FCM is more stable and converges faster to the exact solution than its counterparts 
for every first order decrease in the step length. Hence, FCM is a good approach to be included 
in the class of explicit one-step methods for the solution of initial value problems in ODEs. 
Finally, all the computations were carried out with the aid of MATLAB R2014a, 8.3.0.552, 32 
bit (win 32) in double precision. The methodology can be extended for the solution of higher 
order ordinary differential equations. 
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