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ABSTRACT 
 

In the marine ecosystem, the time delay or lag may occur in the predator response function, 
which measures the rate of capture of prey by a predator. This is because, when the growth of 
the prey population is null at the time delay period, the predator’s growth is affected by its 
population and prey population densities only after the time delay period. Therefore, the 
generalized Gause type predator-prey fishery models with a selective proportional harvesting 
rate of fish and time lag in the Holling type II predator response function are proposed to 
simulate and solve the population dynamical problem. From the mathematical analysis of the 
models, a certain dimension of time delays in the predator response or reaction function can 
change originally stable non-trivial critical points to unstable ones. This is due to the existence 
of the Hopf bifurcation that measures the critical values of the time lag, which will affect the 
stabilities of the non-trivial critical points of the models. Therefore, the effects of increasing 
and decreasing the values of selective proportional harvesting rate terms of prey and predator 
on the stabilities of the non-trivial critical points of the fishery models were analysed. Results 
have shown that, by increasing the values of the total proportion of prey and predator 
harvesting denoted by qx Ex and qy Ey respectively, within the range 0.3102 ≤ qx Ex ≤ 0.9984 and 
0.5049 ≤ qy Ey ≤ 0.5363, the originally unstable non-trivial critical points of the fishery models 
can be stable. 
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1.         Introduction 
 
All living organisms like plants, animals and microorganisms and nonliving organisms like air, 
soil and water have complex relationships between them in the ecosystem. The relationship 
between prey and its predator both fish species is known as the predator-prey relationship. 
Predators are dependent on prey for their continued survival. To avoid a single species from 
being dominant, the predator is the leading role in maintaining the prey population and 
improving the biodiversity within the ecosystem.  Mathematical models can be applied to 
simulate the predator-prey population dynamics of the fish species. One of the models to 
analyse the predator-prey interaction is the generalized Gause type predator-prey model which 
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is based on the Logistic growth model and predator response function. A study by Hwang 
(1999) used a unique limit cycle for Gause type predator-prey models for systems of nonlinear 
ordinary differential equations since the limit cycle does not exist in the linear ordinary systems. 
According to Feller (1940), almost all populations that increase asymptotically will follow the 
Logistic growth law to some degree. For the predator-prey relationship, the response functions 
between prey and predator act as the main indicator of the survival of both populations in an 
ecosystem. Three functional responses of the predator are Holling type I, Holling type II and 
Holling type III (Holling, 1965). 

The Holling type I predator reaction function is a linear functional response that gives a 
directly proportional relationship between the rate of consumption of an individual predator 
and the density of its prey. Besides, the Holling type II predator reaction function is also called 
a hyperbolic or Michaelis-Menten functional response is used to analyse the behaviour of the 
predator population towards its different prey densities. The Holling type III or sigmoidal-
shaped functional response was originally proposed as a model to describe the transformation 
of the predator’s preference from primary prey to alternative prey when the primary prey is at 
low densities (Kar & Matsuda, 2007). Safaa et al. (2016) analysed that the Holling type IV 
predator reaction function, also known as the Monod-Haldane functional response, is used to 
describe a condition in which the predator’s per capita rate of predation decreases at sufficiently 
high prey densities.  

Jha & Ghorai (2017) have considered predator-prey models with Holling type I and II 
predation response functions with selective constant harvesting in the predator-prey systems. 
Meanwhile, Martin & Ruan (2001) analysed the effects of constant-rate harvesting of prey 
populations and time lag on the dynamics of a predator-prey system in predation response 
function.  Sinha & Chanda (2014) revealed that the time delay is considered in the predator-
prey system because both predator and prey need their own time to grow from birth to maturity 
and from maturity to death. Moghadas et al. (2004) studied a non-standard numerical scheme 
for a generalized Gause type predator-prey model. They used the Holling type II predator 
reaction function f(x), denoted by: 
 

 (1) 

 
where 𝑚 > 0 is the capturing rate of prey by a predator, 𝑎 is the half saturation constant for 
predator population, which is the prey density at which the functional response of predator is 
half maximal and x is the number of the prey population.  Most researchers (Jha & Ghorai, 
2017; Martin & Ruan, 2001) used Holling type II predator response function with selective 
constant harvesting. However, this research applies selective proportional harvesting. A study 
by Hntsa & Mengesha (2016) indicated that to prevent the extinction of renewable resources, 
researchers must devise efficient harvesting strategies that produce optimum yield while 
maintaining renewable resources above a sustainable level. For fishery management and many 
other harvesting situations, it is unrealistic to consider that the harvest rate is constant which 
does not depend on the population, because the more fish in an area, the more will be caught.  

This article begins with the determination of the first critical values of the time delay and 
is followed by the estimation of the critical values of the total proportion of prey and predator 
harvesting that can affect the stabilities of non-trivial critical points for two fishery models.   

2.         Non-Trivial Critical Points and Characteristic Equations of Fishery Models 
 
In this section, the derivation of the non-trivial critical points which are corresponding to both 
prey and predator presence in an ecosystem and characteristic equations of fishery models I and 
II are considered. The critical points can also be called equilibrium or fixed points, which can 
be analysed as steady-state solutions of a dynamical system. The steady-state solutions have 
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the properties of stabilities. According to Zill & Cullen (2009) from the characteristic equation, 
the type of stability for the critical point can be determined. 

2.1       Non-Trivial Critical Point and Characteristic Equation of Fishery Model I 
 
The dynamical system for fishery model I is also known as the generalized Gause type predator-
prey fishery model with prey proportional harvesting and the time lag in the Holling type II 
predator reaction function is presented by: 

 

 
      

(2) 

where, 
        is the number of preys in tonnes 
        is the number of predators in tonnes 
        is the growth rate of prey population 
       is carrying capacity of the prey population 
       is the capturing rate of prey by a predator 
       is half saturation constant for the predator population 
      is the catchability coefficient for prey population 

       is the effort harvesting rate of prey population 
       is a death rate of the predator population 
      is the time delay in months 
       is time in months 
      c is the rate of conversion of consumed prey to predator 

 
To derive the non-trivial critical point (x*, y* ),  and  in Equation (2) must 
be zero. Therefore, the formula for x* and y* are: 
 

 (3) 

 (4) 
 
By substituting the value of parameters from Kar (2003) which are: 

the 
critical or fixed point obtained is (50.0750, 54.2963).  
 
According to Martin & Ruan (2001) and Zill & Cullen (2009), and . 
Then the linearized system becomes:  
 

 
(5) 

From Equation (5), the characteristic equation (Abdallah et al., 2011; Martin & Ruan, 2001; 
Ruan, 2009; Xia et al., 2009) is: 
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(6) 

 
where, 

and . By 

substituting all the parameter values from Kar (2003), the resulted value is 0.4483 and  is 
0.1106. 

2.2       Non-Trivial Critical Point and Characteristic Equation of Fishery Model II 

The dynamical system for fishery model II is also known as the generalized Gause type 
predator-prey fishery model with predator proportional harvesting and the time lag in Holling 
type II predator reaction function is presented by: 
 

 (7) 

where is the catchability coefficient of the predator and is the effort harvesting rate of 
the predator. The non-trivial critical point (x*, y*) for fishery model II is calculated by letting 
both and  in Equation (7) with zero and resulted in the coordinates of the 
critical values:
 

 (8) 

 (9) 
 
By substituting the value of parameters r = 1.8, k =100, a = 10, , 

,  from Kar (2003) and Kar & Matsuda (2006), 
the non-trivial critical point obtained is (71.4286, 22.0408). All parameter values are taken from 
Kar (2003) and Kar & Matsuda (2006) because these values fit the fishery models and are in 
the permissible range. 
 

Again by letting and (Martin & Ruan (2001); Zill & Cullen (2009)), 
the linearized system becomes: 

            

 
(10) 

 
From Equation (10), the characteristic equation (Abdallah et al., 2011; Martin & Ruan, 2001; 
Ruan, 2009; Xia et al., 2009) is: 
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             (11) 

 
where  and . 

Substituting the parameter values resulted to = 0.8346 and = 0.0632. 

3.         Fishery Model I with Time Delay 

For ,  is the root of the characteristic equation of Equation (6). Letting  into 
Equation (6) produces: 

 (12) 

Applying Euler’s formula,  the real and imaginary parts of 
the complex number in Equation (12) are: 

 (13) 

 
Squaring and adding both sides of the real and imaginary equations in Equation (13) resulted 
to: 
 

 (14) 

 is obtained from the data (Kar, 2003) resulted to . The value  
is found by solving Equation (13) for τ. So, by multiplying and into real and 

imaginary parts of Equation (13) respectively,  is: 
 

 (15) 

Considering only the first cycle of the arctangent and substituting all parameter values resulted 
to . All the calculated values satisfy the following Lemma 3.1. 
 
Lemma 3.1: (Martin & Ruan, 2001) 
If > , > and , then the characteristic equation for fishery model I in Equation 
(6) has a pair of purely imaginary roots, . 

Then, to see if a Hopf bifurcation occurs or not, the transversality condition below needs to be 
verified  
 

	>  (16) 
 
Taking the implicit differentiation on Equation (6) with respect to produces  
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According to Martin & Ruan (2001), the formula to prove the transversality condition is 
 

 (18) 

 
where  is the real part of the complex number and is the sign of the real number whether 
positive or negative. By substituting Equation (17) into Equation (18) we obtain 
 

 (19) 

  
Substituting all parameter values in Equation (19), we get 

 (20) 

 
Since the value obtained is positive in Equation (20), Theorem 3.1 below is satisfied. 

Theorem 3.1: (Martin & Ruan, 2001) 
> , >  and , then the critical point (x*, y* ) of predator-prey fishery model I has 

a pair of purely imaginary roots for . The critical point of fishery model I is stable 

for ˂ and unstable for ˃ .  The system undergoes a Hopf bifurcation at .  

4.        Fishery Model II with Time Delay 

For ,  is the root of Equation (11). The process to determine the eigenvalue,  
for fishery model II is the same as in fishery model I.  Thus, Equation (14) can be written as 
Equation (21) in the fishery model II.   
 

 (21) 

 
Substituting parameter values from Kar (2003), we obtained . Meanwhile 

 from Equation (15), by considering the value of = 0.8346.   Both Lemma 3.1 
and Theorem 3.1 hold for fishery model II. 
 

5.         Numerical Simulation 

Numerical methods such as the Runge-Kutta first order (RK1), Runge-Kutta third order (RK3), 
Runge-Kutta fourth order (RK4) and Runge-Kutta-Fehlberg Fourth-Fifth order (RKF 45) have 
been used to solve the system of differential equations. Mullen (2015) applied and compared 
numerical methods RK1 and RK4 to solve the Optimal Velocity Model for one- and two-car 
systems. Meanwhile, the RK3 method was implemented by Rini & Alyauma (2018) to solve 
the Nth-Order Fuzzy Differential Equations based on the Combination of Arithmetic, 
Harmonics and Geometrics Means with initial values. Furthermore, Paul et al. (2016) applied 
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the RKF 45 method and the Laplace Adomian Decomposition method (LADM) to solve the 
Lotka Volterra prey-predator model. The results showed that RKF 45 was a suitable and 
accurate tool for solving the mentioned model. Hence, this research applied RKF 45 based on 
Mathews & Fink (2004) on the visualization of the stabilities of the non-trivial critical points 
of the two fishery models.  By using this numerical method, the graphs of the predator and prey 
versus time and the phase portrait of prey and predator population concerning time can be 
plotted.  
 

5.1    Effect of Time Delay on the Stability of the Non-Trivial Critical Point of Fishery 
Model I 
 
In this subsection, we verify all mathematical results  and τ = 5.0321 obtained 
in section 3 on the stability of the non-trivial critical point of fishery model I at time delays 
equal to 4.00, 5.0321 and 6.00.  
 

  
Figure 1(a). Predator and prey population versus 
time for fishery model I at  
 

 Figure 1(b). Phase portrait of fishery model I at 
 

 
Based on figure 1(a), periodic oscillations occur on both prey and predator populations 

at 20 to 175 months. After the 175th month, both prey and predator populations converge to 
their equilibrium population, which are 50.0750 and 54.2963 tonnes of fishes respectively. In 
figure 1(b) both prey and predator populations spiral toward their critical values as time 
increases. At τ = 4.00 the non-trivial equilibrium point (50.0750,54.2963) will be an 
asymptotically stable focus. 
 

  
Figure 2(a). Predator and prey population versus 
time for fishery model I at  
 

 Figure 2(b). Phase portrait of fishery model I at 
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In figures 2(a) and 2(b), both prey and predator populations oscillate about their critical 
point or in other words, the prey and predator population neither approach nor recede away 
from the non-trivial critical point (50.0750, 54.2963). The eigenvalues obtained from the 
characteristic equation in Equation (6) at τ = 5.0321 are . The Hopf bifurcation, 
which is the visual aspect of the periodic orbit through a local change in the stability properties 
of a critical point as shown in figures 2(a) and 2(b). The time delay, τ = 5.0321 in fishery model 
I, indicates the transition from the steady condition of prey and predator population in the 
marine ecosystem to periodic conditions. Research conducted by Baisad & Moonchai (2018), 
found that a Hopf bifurcation occurs when a system of differential equations has a pair of 
complex conjugate eigenvalues of the Jacobian matrix at the fixed point.   
 

  
Figure 3(a). Predator and prey population versus 
time for fishery model I at . 

Figure 3(b). Phase portrait of fishery model I at 
 

From the numerical simulation, the limit cycle, which is the periodic solution or orbit, 
occurs at τ = 6.00, which means that the bifurcation occurs before τ = 6.00. From figures 3(a) 
and 3(b), there is a bifurcating periodic solution, which causes the non-trivial critical point 
(50.0750, 54.2963) of the fishery model I to become unstable because both prey and predator 
populations do not converge to their critical number in finite time (600 months). Figure 3(a) 
shows the large periodic oscillations on both prey and predator populations around the critical 
point (50.0750, 54.2963). This indicates that the mentioned critical point is unstable. At this 
level of time delay, the growth of the predator population is affected by its population and prey 
population densities that cause the critical point of the model to be unstable.  

5.2    Effect of Time Delay on the Stability of the Non-Trivial Critical Point of Fishery 
Model II  
 
In this subsection, we verify all mathematical results  and τ = 19.6103 obtained 
in section 4 regarding the stability of the non-trivial fixed point for fishery model II at time 
delays equal to 15.00, 19.6103 and 21.00.  
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Figure 4(a). Predator and prey population versus 
time for fishery model II at . 

Figure 4(b). Phase portrait of fishery model II at
 

 

Figure 4(b) shows that the fixed point is an asymptotically stable focus because both prey 
and predator populations approach the fixed point (71.4286, 22.0408). In figure 4(a), there is 
an occurrence of small periodic oscillation for both prey and predator populations from 125 to 
375 months. After the 375th month, both prey and predator populations converge to the 
equilibrium number of populations, 71.4286 and 22.0408 tonnes of fishes respectively. 

  
Figure 5(a). Predator and prey population versus 
time for fishery model II at . 

Figure 5(b). Phase portrait of fishery model II at 
 

In figure 5(a), both prey and predator populations reach the periodic oscillations that are 
induced by Hopf bifurcation around the non-trivial critical point up to 800 months. Figure 5(b) 
shows that both prey and predator populations oscillate about the equilibrium point (71.4286, 
22.0408). Prey and predator population neither approach nor recede away from the non-trivial 
critical point (71.4286, 22.0408). At τ = 19.6103, the roots from the characteristic equation in 
Equation (11) are  Based on the eigenvalue analysis of the nonlinear dynamical 
system, when the eigenvalues,  are pure imaginary numbers, the type of stability of the critical 
point can either be the stable centre, unstable spiral point or asymptotically stable spiral point 
in the nonlinear system (Zill & Cullen, 2009). 

00.15=t .00.15=t
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Figure 6(a). Predator and prey population versus 
time for fishery model II at  

Figure 6(b). Phase portrait of fishery model II at
 

 

Figure 6(a) shows the bifurcating periodic solution produces a non-stable equilibrium 
point at point (71.4286, 22.0408). Thus, both prey and predator populations do not converge at 
the critical point (71.4286, 22.0408). Figures 6(a) and 6(b) show the limit cycle that describes 
the occurrence of oscillatory behaviour by the Hopf bifurcation on both prey and predator 
populations, hence the non-stable critical point does not reach its equilibrium number of 
populations. At this level of time delay which is τ = 21.00, the growth of predator and prey 
population is unstable.      

5.3       Effect of Total Proportion of Prey Harvesting ( ) on the Stability of the 
Non-Trivial Critical Point of Fishery Model I 
 
In this subsection, we analyse the critical values of the total proportion of prey harvesting on 
the fishery model I when τ = 6.00, which can stabilise the non-trivial critical point that is 
unstable as shown in figure 3(a). From numerical testing, the values qx Ex within the range 
[0.3102, 0.9984], changes an originally unstable non-trivial critical point to become stable. 
 

  

Figure 7. Predator and prey population versus time 
for fishery model I with qx Ex = 0.3102.  

Figure 8. Predator and prey population versus 
time for fishery model I with qx Ex = 0.9984.   

.00.21=t .00.21=t

xxEq
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At , the originally unstable non-trivial critical point become stable as 
shown in figure 7. This is because the equilibrium number of predator population y*

 from 
Equation (4) decreases while the equilibrium number of prey population  x* remains constant 
(x* = 50.0750). There is an oscillation or bifurcation that occurs on both prey and predator 
populations before the 500th month. As time increases, both prey and predator populations 
converge to the critical point (x*, y* ) = (50.0750, 48.2533). From figure 8, 
both prey and predator populations converge to the critical point (50.0750, 0.0072). The prey 
population is dominant in the marine ecosystem, while the predator population is driven to 
extinction. According to Dawed et al. (2014), this situation is preferable because the prey 
population does not receive any threat from the predator population to survive in the marine 
ecosystem. Thus, the prey population would grow at a natural rate. The competition that is only 
present is in between the prey population itself, which is hunting for the same food when the 
predator population is absent in the marine ecosystem. Beyond the critical proportional 
harvesting rate of prey the number of prey populations will be decreased. 

5.4     Effect of Total Proportion of Predator Harvesting ( ) on the Stability of the 
Non-Trivial Critical Point of Fishery Model II 
 
In this subsection, we analyse the critical values of the total proportion of predator harvesting 
on the fishery model II with τ = 21.00 which can stabilise the non-trivial fixed point that is 
unstable as shown in figure 6(a). From the numerical simulation, the range value of the 
parameter qy Ey that can stabilise the unstable non-trivial critical point is [0.5049, 0.5363]. 

  

Figure 9. Predator and prey population versus 
time for fishery model II with  

Figure 10. Predator and prey population versus 
time for fishery model II with    

 
From figure 9, the non-trivial critical point (x*, y* ) = (74.3819, 20.4793) of fishery model 

II for τ = 21.00 and qy Ey = 0.5049  is stable, which is described by the small periodic oscillations 
between 200 to 700 months. After the 700th month, both prey and predator populations will 
converge to their fixed point (x*, y* ) = (74.3819, 20.4793) which is the critical point.  For qy Ey 
= 0.5363 and τ = 21.00, both prey and predator populations approach the equilibrium point 
(99.9325, 0.0703) and stabilise at the beginning of the 25th month, as shown in figure 10.  The 
equilibrium number of predator population approaches null, while the prey population reaches 
its full capacity. In figures 9 and 10 populations of prey are increasing as the total proportion 
of predator harvesting is increasing. This is because the more predator is proportionally 
harvested, the more prey population will be in the marine ecosystem. The prey population does 
not get any threat anymore from predator populations to survive in the marine ecosystem. 
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Hence, the predator population is driven to extinction, whereas the prey population is dominant 
in the marine ecosystem. 

 

6.         Conclusion 

 
From this research, we observed that the first critical values of time lag in the Holling type II 
predator reaction function,  and in fishery model I and II respectively, 
enable both stable non-trivial critical points to become unstable due to the existence of Hopf 
bifurcation that may lead to the existence of a limit cycle. We conclude that the proportional 
harvesting rate of the prey and predator populations had a stabilising effect on the stabilities of 
the non-trivial equilibrium points of the fishery systems. Applying the parameter values from 
Kar (2003) and Kar & Matsuda (2006), we obtain  and , the first critical 
values of time delay for the fishery models I and II, respectively.  We derived new critical or 
equilibrium points (x*, y*) as written in Equation (3),(4),(8) and (9) for both models.  The non-
trivial critical points became stable at τ <	5.0321 and τ <	19.6103, in fishery models I and II 
respectively.  To stabilise the non-trivial critical points of both fishery models, the total 
proportion of prey harvesting qx Ex is in the interval [0.3102, 0.9984] and the total proportion 
of predator harvesting qy Ey is given by 0.5049 ≤ qy Ey ≤ 0.5363. We conclude that the non-
trivial fixed points become stable when the predator population is reduced in the marine 
ecosystem using both fishery models I and II, inevitably enhancing the growth of the prey 
population.   
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