UNIVERSITI TEKNOLOGI MARA

SYNTHESIS AND CHARACTERIZATION OF NEW MACROCYCLIC AND ACYCLIC SCHIFF BASE LIGANDS AND METAL COMPLEXES

KARIMAH BINTI KASSIM

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Applied Sciences

June 2007

ABSTRACT

A series of macrocyclic ligands of 6,13-diphenyl-1,8-dihydro-2,3:9,10-dibenzo-1,4,8,11-tetraazacyclotetradecane-4,6,11,13-tetraene (dptaaH₂) and their methoxy, methyl, nitro, bromo, and chloro derivatives as well as their Co(II), Ni(II) and Cu(II) complexes have been successfully synthesized. The ligands and their complexes are characterized by elemental analysis (CHN), infrared, ¹H and ¹³C liquid and solid-state NMR spectroscopies, magnetic susceptibility as well as X-ray crystallography.

An x-ray investigation carried out on the macrocycle dptaaH₂ suggests that the nitrogen atoms of the ligand are almost co-planar. A cyclic voltammetry study in dimethylsulfoxide (DMSO) shows redox potentials suggesting a irreversible electron transfer phenomenon for Co(dptaa), Co(NO₂dptaa) and Cu(Brdptaa).

Tetradentate acyclic ligands and complexes of N.N-ethylenebis-(salicylideneimine), N,N-phenylenebis(salicylideneimine), bis(2-hydroxyacetophenone)ethylenediimine, bis(2-hydroxyacetophenone)phenylendiimine with Co(II), Ni(II), Cu(II), Mn(II), Sb(III) and Bi(III) complexes have been prepared. The bidentate chelate ligands of N.N'-bis(4-chlorobenzylidene)ethane-1,2-N,N'-bis(4-chlorophenylethylidene)ethane-1,2-diimine, diamine), N.N'-bis(4methylbenzylidene)ethane-1,2-diimine with Co(II) and Ni(II) complexes are also prepared.

The structures of the ligands and complexes are elucidated by elemental analysis (CHN), infrared, ¹H and ¹³C NMR, conductivity measurements, magnetic susceptibility as well as x-ray crystallography. The x-ray investigation of N,N'-bis(4-methylbenzylidene)ethane-1,2-diamine reveals that it is centrosymmetric about the central point of the ethylene bond and posseses E configuration across the azomethine (C=N) bond. The x-ray crystal structure for N,N'-bis(4-chlorobenzylidene)ethane-1,2-diamine is obtained to reveal that the crystal packing is stabilized by weak intermolecular hydrogen bonds, forming a three dimensional network.

The macrocyclic and acyclic Schiff bases and their complexes are screened against *E. coli, Pseudomonas sp., Streptococcus sp., Staphylococcus aureus* and *Salmonella typhi* for antibacterial activity. From the results, it could be concluded that the complexes are better antibacterial agents than their respective free ligands.

Attempts on synthesis of other Schiff base ligands and complexes derived from 1,8-napthalenediamine and 2-aminothiophenol are also reported.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr Hadariah Bahron, for guiding me throughout this research work and especially for all her constructive comments and fruitful suggestions. I also thank Assoc. Prof. Dr Nor Hadiani Ismail in her capacity as a co-supervisor.

I also would like to thank the X-ray Single Crystal Unit from Universiti Kebangsaan Malaysia (UKM) and Universiti Sains Malaysia (USM) for solving the x-ray structure and data in this thesis. Not forgetting the Combinatorial Technologies and Catalysis Research Centre (COMBICAT-UM) for the structure determination by Solid State Nuclear Magnetic Resonance (SSNMR) technique.

I fully appreciate and would like to acknowledge the assistance of all the technical staff involved directly and indirectly in this research project. I am also grateful for the availability of the facilities in the IRDC Science Research Laboratory as well as Faculty of Applied Sciences.

I would very much like to thank all my friends and colleagues, especially Kak Zurina, Azizah, Suzi, Syed, Kak Salmah and Fazli, in the Organic Synthesis and Natural Products laboratory for their friendship, invaluable assistance and helpful conversations. I would also like to thank my husband, Nasrun Mohamad for his love and unfailing support, and not forgetting my children, Iffah and Haaziq for filling my days with laughter and making the difficult times bearable. Not forgetting, my dearest mother, Hajjah Haninah Hj Nor, for her support and her love. Most of all, I am very grateful to Allah for blessing me with good health and a lot of perseverance, without which this work will not be completed.

Finally, I would like to acknowledge Universiti Teknologi MARA for the financial support and for giving me the opportunity to pursue my study.

TABLE OF CONTENTS

	Page		
TITLE PAGE	i		
ABSTRACT			
CANDIDATE'S DECLARATION			
ACKNOWLEDGEMENT	iii		
TABLE OF CONTENTS	iv		
LIST OF TABLES	х		
LIST OF FIGURES	xiii		
LIST OF GRAPHS	xvii		
LIST OF ABBREVIATIONS	xviii		
CHAPTER 1: INTRODUCTION			
1.1 Schiff Bases	1		
1.2 Macrocyclic Schiff Bases	6		

1.3 Acyclic Schiff Bases	10
1.4 Problem Statement	14
1.5 Objectives of Study	15

СН/	APTER	2: EXPERIMENTAL AND INSTRUMENTATIONS	16
2.1	Experin	nental Method	16
2.2 Purification of Reagents and Solvents			16
	2.2.2	Purification of Phosphorus Oxychloride (POCI ₃) Purification of Tetrahydrofuran (THF) General Purification of Solvents	16 17 17
2.3	Instru	imentation	18

2.4 Characterization	19					
2.4.1 Elemental Analysis for CHNS/O 2.4.2 Fourtier Transformed Infrared Spectroscopy (FTIR)	19 19					
2.4.3 Liquid State Nuclear Magnetic Resonance (NMR) 2.4.4 Solid State Nuclear Magnetic Resonance (SSNMR)	19 20					
2.4.5 Molar Conductivity Measurement2.4.6 Magnetic Susceptibility Measurement2.4.7 X-Ray Crystallography	20 21 22					
2.5 Qualitative Antimicrobial Assay	22					
CHAPTER 3: MACROCYCLIC SCHIFF BASES						
3.1 Macrocyclic Schifff Bases	23					
3.2 Types of Macrocyclic Ligands	24					
3.3 The Natural Macrocycles	25					
3.3.1 Heam 3.3.2 Chlorophyll 3.3.3 Vitamin B ₁₂	25 26 27					
3.4 Experimental Methods	28					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	28 31 33 34 35 36 36					
 3.5.2 Metal Complex Synthesis 3.5.2[a] Co(dptaa) 3.5.2[b] Ni(dptaa) 3.5.2[c] Zn(dptaa) 3.5.2[d] Cu(dptaa) 3.5.2[e] Co(NO₂dptaa) 3.5.2[f] Ni(NO₂dptaa) 3.5.2[g] Zn(NO₂dptaa) 	36 37 38 38 38 39 39 39					