


SOURCE referred to here is the information to be transmitted in a channel
or a medium. The ENCODE is broken up into two stages, one the encoding
of the source and the other the further encoding to fit the channel. In computing
terms, this process corresponds to representing the characters, typed in at the
keyboard, with binary digits of O's and l's by the ocmputer. Before being
transmitted over a telephone line, these binary digits are futher converted into
analog signals by a modem.

The DECODE block in the figure is a process of recovering the original
information that have passed through the transmission medium. It is here that
any modification of the data stream by some noise in the media channel is
detected before the message finally reaches its destination.

This paper deals with the available techniques being used to code and
decode messages into bit strings at the ENCODE and DECODE stages of the
signaling system. However, we will not discuss transmission errors caused by
human interception as these fall into the category of data security and involve
the study of cryptology as a whole.

2.0. Parity Checks Technique

The simplest of all error detection techniques is the single parity check
technique. An extra bit is appended to the character code to be transmitted for
error detection. For example, in the ASCII character code, characters are map
ped into strings of seven bits and then a parity check bit is appended as an
eighth bit which we will call cb (please refer to (Figure 2.0.).

b] b2 b3 b4 bS b6 b7 cb
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Fig. 2.0. Single Parity Check,

The final bit cb is aparity check bit which is the modulo 2 sum of b1 through
b7' In other words, this parity check bit has the value 1 if the number of 1's in
the bit string is odd, and has the value 0 otherwise. The entire message is
therefore of even parity. (For simplicity, we will only consider even parity check
code.) At the receiving end (DECODE), the count of the number of }'s is
made, and an odd number of l's in the strings indicates that at least one error
has occurred.

Despite the remarkable simplicity of the single parity check, it is still inade
quate for reliable detection of errors for the following reasons:
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1) For an even check bit it can only detect odd number of errors.

2) If tlte probability of an error in any binary possition is p < 1, and errors in
different positions are assumed to be independent, then for n « lip,
the probable number of single error P(Ei ) = np. The probability of a
double error P(Ei I Ej) = n (n - 1) r/2 where i and j are the positions
of errors. Simply stated, the single parity check technique only detects
errors in about half of the encoded strings where errors occur!

3) Dimitry and Gallager pointed out that;
In physical situation, this poor behavior is exaggerated by the fact that
many modems map several bits into a single sample of the physical channel
input, and an error in the reception of such a sample typically causes
several bits errors. Also, many kinds of noise, such as lightning and tem
porarily broken connection, cause long bursts of errors rendering a single
parity check as ineffective due to an even number of errors occurring
almost as likely as odd number ones (DIMITRY).

Although single parity check technique is not very reliable in detecting
errors in transmission, it is rather universally used in digital computers for error
detection. This method is effective in an application that has a low pr'obability
of errors in one bit. An example of this is the checking of memory chips in a
computer system. Parity check bit technique also provides us a foundation upon
which a generalization of arbitrary parity check codes can be developed.

 3.0. Improvements On The Parity Check Bits.

We have seen how the simple and intuitive approach of adding a check bit at
the end of a message string bit can provide us an idea for developing useful
coding techniques. Questions that still need to be addressed are:

1) How many of these check bits are needed in order to detect more errors
in a message?

2) How does the number of check bits used affect the probability of errors
occuring in a message?

3) Can we obtain a code that allows us to increase the rate at which informa
tion may be transmitted through a channel while maintaining a fixed error
rate?
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The parity check bits are called the CRC with length 1= n-k. The CRC
can be represented by another polynomial

l-1 l-z
c(x) = c

l
x + C x + ••••• + C x + C •

-1 l-z 1 0

For the h~g~er order coefficien~s in a code'pOltOmial to.be able.to. carry
the message dIgits, we have to multiply sex) by xn- . The effect of thiS IS that
the message is shifted n-k places to the right. Since l = n - k, the entire frame
of transmitted information and the CRC can then be represented by

y(x) .. s(x)x l + C(X)

l+k-1
.. 5 X

k-t
+ ....•. + + ••••••. +

If we devide 5 ( X ) Yo l by P ( Yo) we will form a polynomial

z ( x ) = X ls ( Yo) + r ( x) where r ( x) is the remainder.

For a given p(x), the mapping from the information polynomial to the CRe
polynomial c(x) is given by

l .
c ( Yo ) = r ( Yo ) = Rem [ 5 ( ~; ) ~; I p ( x ) ] •

Now, z(x) = xn-k sex) + rex) is always a multiple of p(x) because,

xn-k sex) = p(x). q(x).+ rex) where deg[r(x)] ( n-k or rex) = O.
Hence,

z(x) = rex) + xn-k sex)
= -rex) + xn-k sex)
= q(x). p(x).

rex) = -rex) because the coefficients are restricted to be binary and arithmetic
is performed in modulo 2.

Polynomial representation of n bits binary number gives us a more genera
lized coding technique commonly referred to as Cyclic Codes. It turns out many
of the earlier coding techniques such as the Hamming Codes and the Golay
Codes are special cases of Cyclic Codes. These codes are important because
they have algebraic properties which allow them to be easily encoded and ecoded.
These codes also have the added property of detecting more errors in message
bits. This last statement is proven by the following theorem.
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Theorem. If p(x) and q(x) are primitive polynomials of degree m, then for n ~
2m -I, (n,n-m)-code generated by p(x) detects all single and double errors, and
(n,n-m-l) - code generated by p(x) = (1 +x) q(x) detects all double errors and
any odd number of errors.

Note: A primitive polynomial is an irreducible polynomial p(x) of degree m
over Zp with the added property g(x)1 xk -1 for k ~ pm_I.

Proof:

Let z(x) = s(x)xn-k + r(x) be the transmitted code word and a(x) = z(x)
+ e(x) be the received word to be decoded where e(x) is the error polynomial.
An error is detectable<=> p(x) I a(x). But, since p(x) divides z(x) this implies
that it is sufficient to show p(x) I e(x).

Note: The symbol I means "is divisible by" and { means otherwise.

Case 1: A single erC?r occurs in a code ~ord.

In this case, e(x) will contain a single term, sap:', where 0 S i < n.
But p(x) is.irreducible, i.e .. it cannot have 0 as a root; therefore, p(x)
-t xi., and thus the error x\ is detectable.

Case 2: A double error Occurs

\ .
e(x) is of the form x + xJwhereO S i < j < n,Le.,e(x)
=x\(1 + xj-i.) where 0 < j-i < n.
But, p(x) being primi~iye and p(x) { xi.

== > p(x){ 1 + x J-\ if j-i < 2 m _l
and, p(x)isirreducible=> p(x) {xi.(1 + xj-i.)

for n S 2 m-l

thus, all double errors are detectable.

The rest of the theorem follows from the above statements and the fact
that a polynomial in Z2 [xl has a factor (x + 1) if and only if it has an even
number of nonzero coefficients. Thus our theorem is proven.

The importance of the above theorem is that it gives us an idea of how to
construct a code that can detect a lot of errors and at the same time the number
of messages it will encode is still very large. As mentioned by Gilbert;
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