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ABSTRACT:

The purpose of this paper is to describe currently available algebraic coding
techniques for error detection in computer communication and the problems associated
with them. We will first discuss the simplest technique being employed followed by
complicated ones involving cyclic codes. We will also introduce a simple comparison
method for information flow rate in data transmission. This method can be used to
compare all (n, k) - codes with a fixed error rate.

1.0. INTRODUCTION

In computer communication, it is vital 'that all messages be delivered as
error-free as possible. A single bit error in a message in processes such as the
transmission of computer programs and file transfer can have serious consequen­
ces. However experience shows that it is not easy to build equipment that is
highly reliable even with the advancement in computing technology today. Fur­
thermore, communication systems are limited in their performance by the avai­
lable signal power, the inevitable background noise, and the need to limit ban­
dwidth (TAUB). Error detection techniques are developed to check the presence
of noise (error) that is usually present whenever messages are communicated
over a distance via a medium.

The fundamental method of data transmission in an electronic medium is
the conventional signaling system which is shown in Figure 1,0 (HAMMING):

I SOURCE 1-> I ENCODE 1-> L..- ---J-> I DECODE 1-> I SINK I
Figure 1.0. Conventional Signaling System
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SOURCE referred to here is the information to be transmitted in a channel
or a medium. The ENCODE is broken up into two stages, one the encoding
of the source and the other the further encoding to fit the channel. In computing
terms, this process corresponds to representing the characters, typed in at the
keyboard, with binary digits of O's and l's by the ocmputer. Before being
transmitted over a telephone line, these binary digits are futher converted into
analog signals by a modem.

The DECODE block in the figure is a process of recovering the original
information that have passed through the transmission medium. It is here that
any modification of the data stream by some noise in the media channel is
detected before the message finally reaches its destination.

This paper deals with the available techniques being used to code and
decode messages into bit strings at the ENCODE and DECODE stages of the
signaling system. However, we will not discuss transmission errors caused by
human interception as these fall into the category of data security and involve
the study of cryptology as a whole.

2.0. Parity Checks Technique

The simplest of all error detection techniques is the single parity check
technique. An extra bit is appended to the character code to be transmitted for
error detection. For example, in the ASCII character code, characters are map­
ped into strings of seven bits and then a parity check bit is appended as an
eighth bit which we will call cb (please refer to (Figure 2.0.).

b] b2 b3 b4 bS b6 b7 cb

o::I:iliIJIITil
Fig. 2.0. Single Parity Check,

The final bit cb is aparity check bit which is the modulo 2 sum of b1 through
b7' In other words, this parity check bit has the value 1 if the number of 1's in
the bit string is odd, and has the value 0 otherwise. The entire message is
therefore of even parity. (For simplicity, we will only consider even parity check
code.) At the receiving end (DECODE), the count of the number of }'s is
made, and an odd number of l's in the strings indicates that at least one error
has occurred.

Despite the remarkable simplicity of the single parity check, it is still inade­
quate for reliable detection of errors for the following reasons:
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1) For an even check bit it can only detect odd number of errors.

2) If tlte probability of an error in any binary possition is p < 1, and errors in
different positions are assumed to be independent, then for n « lip,
the probable number of single error P(Ei ) = np. The probability of a
double error P(Ei I Ej) = n (n - 1) r/2 where i and j are the positions
of errors. Simply stated, the single parity check technique only detects
errors in about half of the encoded strings where errors occur!

3) Dimitry and Gallager pointed out that;
In physical situation, this poor behavior is exaggerated by the fact that
many modems map several bits into a single sample of the physical channel
input, and an error in the reception of such a sample typically causes
several bits errors. Also, many kinds of noise, such as lightning and tem­
porarily broken connection, cause long bursts of errors rendering a single
parity check as ineffective due to an even number of errors occurring
almost as likely as odd number ones (DIMITRY).

Although single parity check technique is not very reliable in detecting
errors in transmission, it is rather universally used in digital computers for error
detection. This method is effective in an application that has a low pr'obability
of errors in one bit. An example of this is the checking of memory chips in a
computer system. Parity check bit technique also provides us a foundation upon
which a generalization of arbitrary parity check codes can be developed.

 3.0. Improvements On The Parity Check Bits.

We have seen how the simple and intuitive approach of adding a check bit at
the end of a message string bit can provide us an idea for developing useful
coding techniques. Questions that still need to be addressed are:

1) How many of these check bits are needed in order to detect more errors
in a message?

2) How does the number of check bits used affect the probability of errors
occuring in a message?

3) Can we obtain a code that allows us to increase the rate at which informa­
tion may be transmitted through a channel while maintaining a fixed error
rate?
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It turns out that the first two questions can be answered by polynomial
representations of binary digits which lead us to what is known as Cyclic Redun­
dancy Checks or simply CRC method. The method is presently implemented
in most Data Link Control (OLe) in computer networks today. However, the
answer to the third question requires us to study deeper into channel capacity
(the maximum reliable data rate in bps) and Shannon's Theorem. This will lead
us to the Golay Code and the Bose, Chaudry and Hocquenghen (BCH) Codes
that are still being studied by coding and information theorists worldwide.

4.0. Polynomial Representations of n binary digits.

Definition 4.1. An (n,k) - code is a binary-coded messa~e in blocks of k digits.
Each block is encoded with (n-k) digits of binary check bits.

In an (n-k) - code there are 2n possible words that could be received of
which 2k are code words.

Definition 4.2. A code rate or information rate, R in an (n,k) - code is defined
to be the number of redundant digits divided by the number of possible words
or. simply , R = kin.

With the given definitions we can represent a word n binary digits by
means of a polynomial in Z [x J. (Z [x J is a set of integers modulo n,

Z n
of degree less than n.) The binary bits a a •••• a can be represented

o t n-t
by the polynomial

a
o

+ a x +••••• + a x n-t E Z [x J •
t n-t Z

Definition 4.3. Let p(x) E Zz[ x J be a polynomial of degree n -k . The
polynomial code generated by p(x) is an (n -I:) - code. The code words formed
are polynomials of degree less than 11 which are divisible by p(x).

A message of length k is represented by a polynomial s(x), of degree less
than k where

Sex)

The coefficients Sk_t' Sk_Z'· •• ·., 5 t' So which denote the data bits

have the value of either 0 or i.
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The parity check bits are called the CRC with length 1= n-k. The CRC
can be represented by another polynomial

l-1 l-z
c(x) = c

l
x + C x + ••••• + C x + C •

-1 l-z 1 0

For the h~g~er order coefficien~s in a code'pOltOmial to.be able.to. carry
the message dIgits, we have to multiply sex) by xn- . The effect of thiS IS that
the message is shifted n-k places to the right. Since l = n - k, the entire frame
of transmitted information and the CRC can then be represented by

y(x) .. s(x)x l + C(X)

l+k-1
.. 5 X

k-t
+ ....•. + + ••••••. +

If we devide 5 ( X ) Yo l by P ( Yo) we will form a polynomial

z ( x ) = X ls ( Yo) + r ( x) where r ( x) is the remainder.

For a given p(x), the mapping from the information polynomial to the CRe
polynomial c(x) is given by

l .
c ( Yo ) = r ( Yo ) = Rem [ 5 ( ~; ) ~; I p ( x ) ] •

Now, z(x) = xn-k sex) + rex) is always a multiple of p(x) because,

xn-k sex) = p(x). q(x).+ rex) where deg[r(x)] ( n-k or rex) = O.
Hence,

z(x) = rex) + xn-k sex)
= -rex) + xn-k sex)
= q(x). p(x).

rex) = -rex) because the coefficients are restricted to be binary and arithmetic
is performed in modulo 2.

Polynomial representation of n bits binary number gives us a more genera­
lized coding technique commonly referred to as Cyclic Codes. It turns out many
of the earlier coding techniques such as the Hamming Codes and the Golay
Codes are special cases of Cyclic Codes. These codes are important because
they have algebraic properties which allow them to be easily encoded and ecoded.
These codes also have the added property of detecting more errors in message
bits. This last statement is proven by the following theorem.
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Theorem. If p(x) and q(x) are primitive polynomials of degree m, then for n ~
2m -I, (n,n-m)-code generated by p(x) detects all single and double errors, and
(n,n-m-l) - code generated by p(x) = (1 +x) q(x) detects all double errors and
any odd number of errors.

Note: A primitive polynomial is an irreducible polynomial p(x) of degree m
over Zp with the added property g(x)1 xk -1 for k ~ pm_I.

Proof:

Let z(x) = s(x)xn-k + r(x) be the transmitted code word and a(x) = z(x)
+ e(x) be the received word to be decoded where e(x) is the error polynomial.
An error is detectable<=> p(x) I a(x). But, since p(x) divides z(x) this implies
that it is sufficient to show p(x) I e(x).

Note: The symbol I means "is divisible by" and { means otherwise.

Case 1: A single erC?r occurs in a code ~ord.

In this case, e(x) will contain a single term, sap:', where 0 S i < n.
But p(x) is.irreducible, i.e .. it cannot have 0 as a root; therefore, p(x)
-t xi., and thus the error x\ is detectable.

Case 2: A double error Occurs

\ .
e(x) is of the form x + xJwhereO S i < j < n,Le.,e(x)
=x\(1 + xj-i.) where 0 < j-i < n.
But, p(x) being primi~iye and p(x) { xi.

== > p(x){ 1 + x J-\ if j-i < 2 m _l
and, p(x)isirreducible=> p(x) {xi.(1 + xj-i.)

for n S 2 m-l

thus, all double errors are detectable.

The rest of the theorem follows from the above statements and the fact
that a polynomial in Z2 [xl has a factor (x + 1) if and only if it has an even
number of nonzero coefficients. Thus our theorem is proven.

The importance of the above theorem is that it gives us an idea of how to
construct a code that can detect a lot of errors and at the same time the number
of messages it will encode is still very large. As mentioned by Gilbert;
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... by adding 11 check digits to a message of length 1012 or less using the
generator polynomial

we can detect single, double, triple and any odd number of errors. The
• number of different messages of length 1012 is 21012 , i.e., in base 10,

this would be 305 digits, which is an enormous figure (GILBERT).

5.0. Improved Transmission Rate With Constant Errors

The existence of coding techniques that will allow a communication system
to transmit information with an arbitrarily small probability of errors is given
by the following theorem due to Shannon.

Theorem.There exists a coding technique which is arbitrarily reliab~e that allows
the output of the source to be transmitted over a channel 'with capacity C
provided the information rate R, is such that R ~ C = Blog2 (1 + Sf (nO B)),
where B is the available badwidth of the channel, S is the allowable signal power
as seen by the receiver, and nO B is the noise power per unit bandwidth assumed
to be uniformly distributed over B. .

(For the proof of the theorem, please refer (SLEPIAN].)

The significance of the theorem is that as long as the channel capacity is
not exceeded by the number of messages to be transmitted, the probability of
errors in the received code word may' be made arbitrarily small. The only problem
is that a coding technique that will allow the transmission rate to reach the upper
bound is yet to be found. Nevertheless, the Shannon's Limit above is widely
used to measure the efficiency of a code for data transmission.

Finally, the third question concerning an increase in the flow rate of tran­
smission can be solved by using the most powerful class of techniques of error
correction known to date, i.e. the BCH codes.

Definition 5.1. A Galois field of order pm , denoted by GF (pm) is a finite
field with pm elements.

Dermition 5.2. A t-error-correcting BCH code of length n = 2m - 1 has a
generator polynomial p(x) that is constructed as follows. Take a primitive ele­
ment Ol in the Galois field GF(2m). Let P. (x) I; Z [x 1 be the irreducible. \ z
polynomial withOl\ as a root .

•
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Then,

p(x) = LCM(PI (x), P2 (x), ,P2t· (x))
where LCM is the least common multiples.

The number of bits in a code word in the BCH-codes is k + r, where k is
the information bits and r is the parity check bits. The number of errors t, which
can be cor.rected in an (n,k) - code is rim where m is given by the relation n =
2m-l [BLAKE]. One interesting fact is that the number t is somehow related to
the formula R = kin for information rate. Since r = n-k and k = nR we have·
r = n - nR = n(I-R). Also, log2 (n+ 1) = m which implies that

t ':'n(I-R)/log2 (n+1). Eq. 1.0

We can easily use this calculation to make comparison of data transmission rates.

Example. The BCH code that corrects three errors is a (31 ,16)- code generated by

The Golay Code that corrects three errors is a (23,12) cyclic code whose gene­
rating function is

p(x) = xlI + x9 + x7 + x6 + x5 + x + 1.

From Eq. 1.0, the information rate is R = 1 - (tlog2 (n + 1))/n). Substituting
n = 31 and n = 23 respectively with t = 3 into the formula we can see that the
BCH code gives R = 52% and the Golay code gives R = 40%. Therefore the
BCH code of (31 ,16) gives 12% higher flow rate for transmission than the (23,12)
Golay code.

6.0. Conclusions.

One of the advantages of the algebraic coding techniques we have just
described is that they allow for alternative techniques which reduce the comple­
xity of decoding information. However these techniques involve considerably
deep and subtle results from algebraic number theory. Even with the advance­
ment~ of computing technology today, we still face the problem of translating
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abstract ideas into the design of finite state machine. For example the BCH
(135, 101) - code which will correct up to 7 errors adds 34 check digits to the
101 message bits and hence contain 234 syndromes (calculations involving parity
check matrix). But the question is how to store all these syndromes and their
coset leaders (most likely error patterns) in a computer of today? It is almost
impossible to decode the message by the same encoding scheme. One way to
address this problem is to do the decoding by other methods. And finally, a
quote from Blake et al;

Any code with a relatively high information rate must be long and
consequently, to be useful, must possess a simple algebraic decoding algorithm
[BLAKE].
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