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ABSTRACT 

 

Rotor system is the main part of turbomachines. Critical speeds occur when 

the rotor spin-speed matches with its natural frequencies, and result in great 

vibration amplitudes often leading to catastrophic failure. Design 

specifications based on these critical speeds become essential for the engineer. 

In this paper, whirling vibrations of a spinning, stepped Timoshenko shaft 

carrying three identical rigid disks are solved using a developed program in 

Fortran 90 language, based on relationships between the solution coefficient 

vectors of differential equations of motion. The flexural vibrations are 

considered in two orthogonal planes. Shear deformation, rotary inertia, and 

gyroscopic moments are taken into account. This study shows that in the case 

of the Timoshenko model, the relationship matrix form between the 

aforementioned vectors presents an advantage, that reduces the number of 

multiplied matrices when adjacent shaft segments have the same mechanical 

and geometric properties. The presented approach and Natanson's technique 

are combined to determine the whirling mode shapes. The accuracy of the 

presented technique is confirmed by comparing the obtained results with those 

available in the literature. 

 

Keywords: Timoshenko Shaft Segment; Vibration; Gyroscopic Effect; Vector 

of Solution Coefficients; Transfer Matrix 

 

 

Introduction 
 

In the calculation of dynamic characteristics of spinning shaft-disk systems, 

the orthogonality hypothesis of the cross-section to the centerline after 

deformation, and the neglect of shear deformation, are justified for slender 
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shafts, since it is well known that the effects of mentioned factors are small. 

However,  the classical Bernoulli-Euler beam theory is also known to be 

imprecise for the vibration of higher modes, due to the induced mathematical 

modeling error,  in the critical speed prediction. With the increasing demand 

for high-speed rotating machinery subjected to a wide range of speed changes, 

it has become necessary to discuss higher orders of vibration. Thus, the 

Timoshenko beam theory, which includes the rotary inertia and shear 

deformation of the cross-section, is applied in order to improve the accuracy 

of vibration analysis of the general rotating shaft. Additionally,  the bending 

vibrations of rotating shafts are peculiarly characterized by gyroscopic 

moments.  

Whirling vibration is a source of noise and fatigue failure of the rotating 

shaft [1]. Klanner et al. [2] presented a quasi-analytical solution for the 

whirling motion of multi-stepped rotors using the Rayleigh beam theory 

including rotary inertia and gyroscopic effects. Among studies based on the 

Timoshenko beam theory that focused on the whirling of rotors, Eshleman and 

Eubanks [3] investigated analytically the effect of axial torque on critical 

speeds of a uniform shaft taking into account the gyroscopic moment effect of 

the shaft. Bose and Sathujoda [4] studied the effects of variations in material 

gradation and thermal gradients on the whirl frequencies of a functionally 

graded rotor-bearing system, using the finite element method. Curti et al. [5] 

proposed an analytical method, based on the dynamic stiffness matrix of 

rotating-beam, for dynamic rotor analysis. Zu and Han [6] solved analytically 

the free bending vibrations of a spinning, finite beam for the six classical 

boundary conditions, and concluded that the simply-supported beam possesses 

two sets of natural frequencies corresponding to each mode shape, with 

identical forward and backward mode shapes, corresponding to each set. Han 

et al. [7] solved analytically the dynamics of a simply supported, spinning shaft 

subjected to a moving load, using the modal analysis method. Raffa and Vatta 

[8] studied the gyroscopic effects in the Lagrangian formulation of a rotating 

beam, by comparison of two Lagrangian densities differing from each other by 

the expression of gyroscopic terms. Hsieh et al. [9] developed a modified 

transfer matrix method to analyze the coupled lateral and torsional vibrations 

of a symmetric rotor-bearing with an external torque, and they determined the 

synchronous and superharmonic whirls in steady-state using the harmonic 

balance method. Raffa and Vatta [10] established the motion equations of an 

asymmetric shaft using the Lagrangian density formulation for continuous 

systems. Shiau et al. [11] analyzed the dynamic behavior of a spinning beam 

subjected to a moving skew force with general boundary conditions, using 

global assumed mode method. They deduced that the axial deflections due to 

the skew force are larger in the case of hinged-hinged boundary. Torabi and 

Afshari [12] analyzed the whirling of the rotor and investigated the effect of 

angular velocity of spin, axial load, slenderness, and Poisson's ratio on its 

forward and backward frequencies. Afshari et al. [13] analyzed the gyroscopic 
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effects on free transverse vibrations of multi-stepped rotors resting on bearings 

each replaced by four springs acting in two perpendicular directions, using the 

differential quadrature element method,  and the Timoshenko beam theory. Y. 

Zhang et al. [14] developed a mathematical model of a rotating shaft with 

centrifugal terms using Hamilton’s principle and Euler angles. They 

investigated the effect of centrifugal terms on the rotor stability by modal 

analysis. Afshari et al. [15]  presented a solution using concepts of Dirac’s 

delta function for whirling analysis of rotors carrying several concentrated 

masses. They showed the effect of point masses and the value of their 

translational inertia on vibration characteristics of rotors. Wu and Hsu [16] 

proposed an analytical approach for forward and backward whirling speeds 

and the associated mode shapes of uniform and nonuniform (stepped) shaft-

disk systems. In [16], the obtained results are compared with those obtained 

from the conventional finite element method (FEM), however, the fourth and 

fifth forward whirling mode shapes, of the nonuniform  (two-step) shaft-disk  

 

 

Physical Model of Multi-step Timoshenko Shaft-disk System  
 

Equations of motion  
Figure 1, shows a multi-step Timoshenko shaft composed of n uniform shaft 

segments [denoted by (1), (2), …, (i), (i+1), …, (n-1), (n)] each with the 

corresponding length Li, carrying several rigid disks each with a mass ,im  

polar moment of inertia , ,P iJ  and diametric moment of inertia ,d iJ .  

 

 

 

Figure 1: A nonuniform (multi-step) shaft carrying several rigid disks 

 

The division is made at the junction of two adjacent shaft segments 

which have different mechanical and/or geometric properties, and at section 

passing through the center of gravity of disk (i) joining two shaft segments (i)  

and (i+1). The analyzed physical model is considered to be a linear system, 

and it is assumed that each disk (i) represents a discrete mass. For each shaft 
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segment (i), a fixed coordinate system ( ,  ,  )i i ix y z is adopted, whose axes are, 

respectively, parallel to the axes of the fixed reference system (X, Y, Z).  

Differential equations of motion for rotors are available in many forms 

in the open literature. The equations of motion of the (i-th) rotating shaft 

segment taking into account the effects of transverse shear, rotary inertia, and 

gyroscopic moments can be presented as [22]. 
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where; 

 

( ) ( ) ( ) ( ) ( )2 2 4 4 2 3

, , ,/ , / , , , ( ), /i i i i z y i i p i iE N m G N m I I I m I m S m kg m= =
  

 

are modulus of elasticity, shear modulus, a diametric moment of inertia, polar 

moment of inertia, cross-sectional area, and mass density of the ith shaft 

segment. , ,( , ),  ( , )y i z iu x t u x t  and , ,( , ),  ( , )z i y ix t x t   indicate components of 

transverse displacement and their corresponding bending angles, respectively. 

ik  is the shear correction factor. 

An element (dx) of the ith Timoshenko shaft segment in its fixed space 

coordinates ( ,  ,  )i i ix y z is shown in Figures 2 (a, b). The quantities 
,y iu

x




and 

,z iu

x



  
represent slopes of the elastic axis of the element, z,iψ  and y,iψ denote 
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slopes due to bending, xy,iγ  and xz,iγ are the shear angles between the elastic 

axis and the perpendicular to the shear face in (a) the xy -plane, and (b) the xz

-plane. 

        

                                                                               

                               

 

                                                      

 

                                                                   

    
 

 

Figure 2: Element dx of i-th Timoshenko shaft segment: a- in (xi yi) plane, b- 

in (xi zi) plane 

 

To avoid solving the coupled equations, the following complex variables have 

been introduced: 

 

    

, ,( , ) ( , ) ( , ),i y i z iu x t u x t ju x t= +                                                                       (5a)    

                                          

    , ,( , ) ( , ) ( , ),i z i y ix t x t j x t  = −                                                                     (5b) 

 

with 1j = − . Equations (1-4) are combined to obtain two complete partial 

differential equations of motion by multiplying Equations (2) and (4) by j and 

adding them to Equations (1) and (3), respectively. Equations (1-4) become: 
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By differentiating Equations (6b) with respect to x, and taking into account 

(6a), the following equation can be obtained: 
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Substituting the expression 
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Differentiating Equation (7a) with respect to x, and substituting in it the 

expression of  
( , )iu x t

x


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 given by Equation (8b), the following equation can be 

obtained: 
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Equations (8a) and (9a) represent the uncoupled equations of motion. The 

complex variable representation of the shear angle is: 
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The vibrational solutions of Equations (8a) and (9a) can be written as: 
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where ( )iu x and ( )i x  are the shape functions of ( , )iu x t and ( , )i x t , 

respectively,   the whirling frequency of the Timoshenko shaft-disk system. 

The upper sign +( ) and lower sign −( ) refer to forward and backward whirls, 

respectively. Substituting Equations (10a, b) into Equations (8a) and (9a) 

results in the following equations: 
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The solutions to Equations (11) and (12) are: 
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4( )

2 2

i r r r r r r r
 
  = − + + − +  
  

                                        (17) 

 

Substituting Equations (10a,b)  into Equation (6a), yields:                                                   

   𝑎̃𝑖1 = −𝛽1
(𝑖)

𝑎𝑖2,    𝑎̃𝑖2 = 𝛽1
(𝑖)

𝑎𝑖1,    𝑎̃𝑖3 = 𝛽2
(𝑖)

𝑎𝑖4,    𝑎̃𝑖4 = 𝛽2
(𝑖)

𝑎𝑖3              (18) 

The Equations (14) and (15) can be rewritten as follows: 

   

(i) (i) (i) (i)
1 2 3 41 1 2 2( )  sinλ +  cosλ +  sinhλ +  coshλi i i i iu x = a x a x a x a x                             (19) 

 

   
( ) (i) ( ) (i) ( ) (i) ( ) (i)

1 2 3 41 1 1 1 2 2 2 2( ) = cosλ sinλ + coshλ + sinhλi i i i
i i i i iψ x a x a x a x a x   −          (20)   

  

Taking  ,i i iuw = as vibration vector,  this will produce: 

                                   

 

    
( ) j t

i iw w x e =                                                                                          (21)    

   

    

( ) ( ) i i iw x A x V=                                                                                          (22)                                                               

  

where:  

    

    
sin cos sinh cosh

cos sin cosh sinh

(i) (i) (i) (i)
1 1 2 2

i (i) (i) (i) (i) (i) (i) (i) (i)
1 1 1 1 2 2 2 2

λ x         λ x   λ x λ x
A (x)=

β λ x -β λ x β λ x β λ x

 
 
  

   

                                   

and iV
 
is the vector column of solution coefficients for the i-th shaft segment.       

                         

     

 1 2 3 4,  ,  ,  
T

i i i i iV a a a a=                                                                         (23)     

  

According to the Timoshenko beam theory, components of bending moment 

and shear force are [22]: 

 

      

,,
, ,

( , )( , )
( , ) ,     ( , )

y iz i
z i i i y i i i

x tx t
M x t E I M x t E I

x x

 
= =

 
                        (24a) 
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, , , ,( , ) ( , ),      ( , ) ( , )y i i i i xy i z i i i i xz iQ x t k G S x t Q x t k G S x t = = −                     (24b) 

 

where; 

                        

      
, ,

, , , ,

( , ) ( , )
( , ) ( , ),    ( , ) ( , )

y i z i
xy i z i xz i y i

u x t u x t
x t x t x t x t

x x
   

 
= − = +

 
             (25) 

 

, ,( , ) ( , ) ( , )i xy i xz ix t x t j x t  = + is the complex representation of shear angle. 

Taking into account Equations (10a,b), real  parts of bending moments and 

shear forces can be written as: 

 

      
,,

, ,

( )( )
( ) ,   ( )

y iz i
z i i i y i i i

xx
M x E I M x E I

x x

 
= =

 
                                      (26a) 

 

      , , , ,( ) ( ),      ( ) ( )y i i i i xy i z i i i i xz iQ x k G S x Q x k G S x = = −                                (26b) 

 

If external damping due to the hydrodynamic bearing effect is not included, 

the boundary conditions at the left and right ends of the system depicted in 

Figure 1, can be considered as: 

 

     
,1 ,1 1 1 ,1 1 1 ,1(0) 0,      (0) 0,      (0) = 0,       (0) 0y z z y

u u E I E I = = =                    (27a) 

 

    
, , , ,( ) 0,   ( ) 0,    ( ) = 0,   ( ) 0y n z nn n n n z n n n n y n n

u uL L E I L E I L  = = =                (27b) 

 

In terms of the complex numbers, the preceding Equations (27a,b) are reduced 

to the following relations: 

                                             

      1 1 1 1(0) 0,                (0) 0u E I  = =                                                              (28a) 

 

      ( ) 0,             ( ) 0n n n n n nu L E I L = =                                                          (28b)  

           

Vectors of solution coefficients 

A junction of two adjacent shaft segments is depicted  in Figure 3. iL
 
is the 

length of the ith shaft segment, 
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Figure 3: Shear forces and bending moments acting at the junction of two 

adjacent shaft segments  (i)  and  (i+1) 

 

Case of shaft segments with different mechanical and/or 
geometric properties 
At the junction joining two shaft segments having different mechanical and/or 

geometric properties, the equations for continuity of displacements and 

bending slopes are given by: 

 

    , , 1( ) (0)y i i y iu L u +=                                                                      (29a) 

 

    , , 1( ) (0)z i i z iu L u +=                                                                      (29b) 

 

     , , 1( ) (0)z i i z iL  +=                                                                                   (30a) 

 

     , , 1( ) (0)y i i y iL  +=                                                                                  (30b) 

 

Taking into account Equations (5a) and (5b), Equations (29a,b) and (30a,b) 

become: 

 

     1( ) (0)i i iu L u +=                                                                                          (31) 

 

     1( ) (0)i i iL  +=                                                                                        (32) 

 

 

 

 

2 
  

 

 

 

 

 

 

 
 

 
 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Whirling Analysis of Stepped Timoshenko Shaft Carrying Several Rigid Disks 

107 

Equations (31) and (32) can be expressed in a vector form as follows: 

 

     1( ) (0)i i iw L w +=                                                                                         (33)   

 
Thus: 

 

       1 1( ) (0) i i i i iA L V A V+ +=                                                                                (34)      

                                            
where:     

       
(i) (i) (i) (i)

i i i i1 1 2 2

( ) (i) ( ) (i) ( ) (i) ( ) (i)
i i i i1 1 1 1 2 2 2 2

sinλ cosλ sinhλ coshλ
( )

cosλ - sinλ coshλ sinhλ
i i i i i i

L L L L
A L

L L L L   

 
=  
  

    

       1 ( 1) ( 1)
1 2

0 1 0 1
(0)

0 0
i i i

A
 

+ + +

 
=  
  

 

 

The equilibrium equations for shear forces and bending moments require that: 

 

   , , 1( ) (0)z i i z iM L M +=                                                                                   (35a)   

                                               

   , , 1( ) (0)y i i y iM L M +=                                                                                  (35b)  

   

   , , 1( ) (0)y i i y iQ L Q +=                                                                                     (36a)     

                                             

   , , 1( ) (0)z i i z iQ L Q +=                                                                                     (36b)    

                                              

Taking into account relationships (26a,b), the equilibrium Equations (35a,b) 

and (36a,b) become: 

 

      , 1 1 , 1( ) (0)i i z i i i i z iE I L E I + + + =                                                            (37a)   

                                               

      , 1 1 , 1( ) (0)i i y i i i i y iE I L E I + + +
 =                                                                 (37b)    

                                              

      , 1 1 1 , 1 ( )  (0)i i i xy i i i i i xy ik G S L k G S + + + +=                                               (38a)    

                                              

      , 1 1 1 , 1 ( )  (0)i i i xz i i i i i xz ik G S L k G S + + + +− = −                                                 (38b)       

  

Equations (37a,b) and (38a,b) can be derived in terms of the following complex 

numbers: 

 



Ch. Kandouci 

108 

      1 1 1( ) (0)i i i i i i iE I L E I + + +
 =                                                                        (39) 

                                                 

      1 1 1 1 ( )  (0)i i i i i i i i ik G S L k G S + + + +=                                                             (40)   

 

Hence, we get the following matrix form: 

 

      1 1( ) (0) i i i i iD L V D V+ +=                                                                             (41)    

                                              

where; 

 

      
 1 2( )i iD L =  M    

                      

  
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

sin cos

( cos cos ) ( sin sin )

i i i i i i
i i i i i i

i i i i i i i i
i i i i i i i i i i

E I L E I L

k G S L L k G S L L

     

       

 − −
 =  

− − +  

    

                         
( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2 2 2

sinh cosh

( cosh cosh ) ( sinh sinh )

i i i i i i
i i i i i i

i i i i i i i i
i i i i i i i i i i

E I L E I L

k G S L L k G S L L

     

       

 
 =  

− −    

1

( 1) ( 1) ( 1) ( 1)
1 1 1 11 1 2 2

( 1) ( 1) ( 1) ( 1)
1 1 1 1 1 11 1 2 2

(0)=

0 0

( ) 0 ( ) 0

i

i i i i
i i i i

i i i i
i i i i i i

D

E I E I

k G S k G S

   

   

+

+ + + +
+ + + +

+ + + +
+ + + + + +

 −
 

− −  

  

 

Finally, the following relationship can be obtained:                                 

   

   1  i i iV B V+ =                                                                                                 (42)        

                                                                                                                                                         

 with:      

                                                                     

      
1

1

1

(0) ( )

(0) ( )

i i i
i

i i i

A A L
B

D D L

−

+

+

   
=    
   

                                                                         (43)    

                 

The matrix iB
 
can be called a transfer matrix related to the vectors of solution 

coefficients. It has the following form:  
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( ) ( ) ( ) ( )
1 1 2 21 1 2 2

( ) ( ) ( ) ( )
3 3 4 41 1 2 2

( ) ( ) ( ) ( )
5 5 6 61 1 2 2

( )
7 71

cos( ) sin( ) cosh( ) sinh( )

sin( ) cos( ) sinh( ) cosh( )

cos( ) sin( ) cosh( ) sinh( )

sin( ) cos(

i i i i
i i i i

i i i i
i i i i

i i i i i
i i i i

i
i

L L L L

L L L L
B

L L L L

L

       

       

       

   

−

=
−

( ) ( ) ( )
8 81 2 2) sinh( ) cosh( )i i i

i i iL L L   

 
 
 
 
 
 
 

           (44)                                                                                                                      

  

with, 

 

          

( ) ( 1) ( ) ( 1) ( ) ( 1) ( 1) ( )
1 2 1 2 1 2 2 1

1 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 12 1 1 2 2 1 1 2

( ) ( )

( ) ( )

i i i i i i i i
i i i

i i i i i i i i
i i i

k G S

k G S

       


       

+ + + +

+ + + + + + + +
+ + +

− −
= +

− −
 

 

          
( 1) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( )
2 2 2 2 2 2 2 2

2 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 12 1 1 2 2 1 1 2

( ) ( )

( )

i i i i i i i i
i i i

i i i i i i i i
i i i

k G S

k G S

       


       

+ + + +

+ + + + + + + +
+ + +

− −
= +

− −
 

          

( 1) ( 1) ( ) ( )
2 2 1 1

3 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 12 2 1 1 2 2 1 1( ) ( )

i i i i
i i

i i i i i i i i
i i

E I

E I

   


       

+ +

+ + + + + + + +
+ +

= +
+ +

         (45) 

          

( 1) ( 1) ( ) ( )
2 2 2 2

4 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 12 2 1 1 2 2 1 1( ) ( )

i i i i
i i

i i i i i i i i
i i

E I

E I

   


       

+ +

+ + + + + + + +
+ +

= −
+ +

 

          

( 1) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( )
1 1 1 1 1 1 1 1

5 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 12 1 1 2 2 1 1 2

( ) ( )

( )

i i i i i i i i
i i i

i i i i i i i i
i i i

k G S

k G S

       


       

+ + + +

+ + + + + + + +
+ + +

− −
= +

− −
 

          

( ) ( 1) ( 1) ( ) ( 1) ( ) ( 1) ( )
2 1 1 2 1 2 1 2

6 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 12 1 1 2 2 1 1 2

( ) ( )

( )

i i i i i i i i
i i i

i i i i i i i i
i i i

k G S

k G S

       


       

+ + + +

+ + + + + + + +
+ + +

− −
= −

− −
 

          

( 1) ( 1) ( ) ( )
1 1 1 1

7 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 11 1 2 2 1 1 2 2( ) ( )

i i i i
i i

i i i i i i i i
i i

E I

E I

   


       

+ +

+ + + + + + + +
+ +

= −
+

 

          

( 1) ( 1) ( ) ( )
1 1 2 2

8 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 11 1 2 2 1 1 2 2( ) ( )

i i i i
i i

i i i i i i i i
i i

E I

E I

   


       

+ +

+ + + + + + + +
+ +

= +
+ +

 

 

For shaft segments having the same mechanical and geometric properties, we 

get: 

 

1 1 1

1i i i

i i i

k G S

k G S+ + +

= , 
1 1

1i i

i i

E I

E I+ +

= , ( ) ( 1)
1 1

i i  +=   

     
( ) ( 1)
2 2

i i  += , ( ) ( 1)
1 1

i i  += , ( ) ( 1)
2 2

i i  +=                                                   (46a) 

 

i.e. the coefficients 1 2 8,  ,...,    
 
reduce to: 

     1 2 4 5 7 3 6 8μ = -1,    μ = μ = μ = μ = 0,    μ = μ = μ = 1                          (46b) 
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and then the matrix iB takes the following block  diagonal form: 

 

       

( ) ( )
1 1

( ) ( )
1 1

( ) ( )
2 2

( ) ( )
2 2

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0

0 0 cosh( ) sinh( )

0 0 sinh( ) cosh( )

i i
i i

i i
i i

i i i
i i

i i
i i

L L

L L
B

L L

L L

 

 

 

 

 −
 
 

=  
 
 
 

                    (47)                                                                                                                       

 

The relationships between the following ( 1)r − shaft segments can be 

expressed as: 

 

                   1 2....i r i r i r i iV B B BV+ + − + −=                                                              (48)                                                                                                                                                                 

From Equation (47), it is easy to notice that in the case of shaft segments 

having the same physical and geometric properties, Equation (48) reduces to: 

 

                      i r i iV R V+ =                                                                             (49) 

 

where iR  is the matrix iB  from  equation (47), with iL  replaced by: 

                    

1i r

i
i

L L





= + −

=

=                                                                             (50)   

 

(The multiplication of this type of matrices can be replaced by argument 

summation of functions present in these matrices). This advantage does not 

exist with the well-known transfer matrices related to the state vectors. The 

presented approach keeps this advantage even if the linear model of internal 

damping is taken into account. 

 

Case of adjacent shaft segments (i) and (i+1) joined by a discrete 

mass im    

Figures 4 (a,b) show a discrete mass im
 
with inertia matrix iM , joining two 

adjacent shaft segments (i) and (i+1), rotating with spin speed  , on the 

vertical and horizontal planes, respectively. The approximate values of the 

angular speed components are given by: 

 

      , ,sin ( , )  ( , )y z i i z i iL t L t  =                                                          (51a)     

 

      , ,sin( ( , )) ( , )z y i i y i iL t L t  = −  −                                                     (51b)  
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                 (a)                                           

 

 

 

 

 

 

 

 

 

 

                             (b)                   

 

Figure 4:  Forces and moments acting on rigid disk (i), joining two 

Timoshenko shaft segments (i) and (i+1), on (a) the xy - plane, and (b) the xz -

plane 

 

The center of gravity of each disk (i) and centroid of the cross-section 

of the shaft segment are assumed to coincide. If displacements are small, the 

following conditions of displacement continuity are verified: 

 

       , , 1( ) (0)y i i y iu L u +=                                                                                 (52a) 

 

       , , 1( ) (0)z i i z iu L u +=                                                                                 (52b) 

 

       , , 1( ) (0)z i i z iL  +=                                                                                 (53a) 

 

       , , 1( ) (0)y i i y iL  +=                                                                                (53a)     

 

Taking into account Equations (5a,b), (21) and (22), Equations (52a,b) and 

(53a,b) become: 

 

       1( ) (0)i i iu L u +=                                                                                      (54a) 

 

      1( ) (0)i i iL  +=                                                                                      (54b) 

 

      1( ) (0)i i iw L w +=                                                                                      (55a) 

 

     1 1( ) (0)i i i i iA L V A V+ +=                                                                             (55b) 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

² 
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The equilibrium equations at the disk (i) for shear forces and bending moments 

are: 

 

     

2
,

, , 1 2

( , )
( , ) (0, )

y i i
y i i y i i

u L t
Q L t Q t m

t
+


= −


                                                   (56a) 

 

     

2
,

, , 1 2

( , )
( , ) (0, )

z i i
z i i z i i

u L t
Q L t Q t m

t
+


= −


                                                    (56b) 

 

     

2
,

, , 1 , ,2

( , )
( , ) (0, )

z i i z
z i i z i d i p i

L t
M L t M t J J

tt


+

 
= − −


                               (57a) 

 

     

2
,

, , 1 , ,2

( , )
( , ) (0, )

y i i y
y i i y i d i p i

L t
M L t M t J J

tt


+

 
= − −


                              (57b) 

 

where ,d iJ and ,p iJ  are diametric and polar mass moments of inertia of the disk 

(i), respectively. Taking into account Equations (24b) and (26b), Equations 

(56a,b) become: 

   

     
2

, , 1 1 , 1( ) ( ) (0)i i xy i i i y i i i i xy ikG S L m u L kG S  + + +− =                                   (58a) 

 

     
2

, , 1 1 , 1( ) ( ) (0)i i xz i i i z i i i i xz ikG S L m u L kG S  + + +− − = −                               (58b) 

 

Substituting Equations (51a,b) and into Equations (57a,b), respectively, and 

taking into account Equations(24a), (26a), we get: 

 

     ( ) ( )2
, , , , , , 11

( ) ( ) ( ) (0)z z i i d i z i i p i y i i z z ii i
EI L J L jJ L EI     ++

 − −  =         (59a) 

 

     ( ) ( )2
, , , , , , 11
( ) ( ) ( ) (0)y y i i d i y i i P i z i i y y ii i

EI L J L jJ L EI     ++
 − +  =           (59b) 

 

Multiplying Equation (58b) by j and adding it to Equation (58a), will produce:   

 

     2
1 1 1( )  ( ) (0)i i i i i i i i i ikG S L m u L kG S  + + +− =                                              (60a) 

 

Multiplying Equation (59b) by ( )j− and adding it to Equation (59a), we get:   

  

     ( ) ( )2
, , 11

( )  ( )  ( ) (0)i i d i i i p i i i ii i
EI L J L J L EI     ++

 − −  =                     (60b) 
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Equations (60a,b) can be written in the following matrix form: 

 

     
2

, 1 1( ) ( )    ( ) (0) i i i i i i i p i i i i i iD L V M A L V J L V D V   + +− −  =                  (61) 

 

where: 

 

        
0

0

i
i

i

m
M

J

 
=  
 

    

 

and, 

 

        
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 2 2 2 2

0 0 0 0
( )

cos sin cosh sinh
i i i i i i i i i i

i i i i

L
L L L L


       

 
=  

−  
    

 

while, 

       

          1 2 3 4,  ,  ,  
T

i i i i iV a a a a=                                                                           (62) 

Equations (55b) and (61), can be expressed in the following matrix form: 

         1  i i iV H V+ =                                                                                         (63)                                                                                 

 

where, 

         

1

1

2
1 ,

( )(0)

(0) ( ) ( )    ( )

i ii
i

i i i i i i p i i i

A LA
H

D D L M A L J L  

−

+

+

  
=   

− +     

                 (64) 

iH  represents the transfer matrix related to the vector of solution coefficients

iV , through the disk (i)  taking into account its gyroscopic effect. The vectors 

of solution coefficients 2 3 ,  ,..., nV V V , can be determined by means of the 

above-derived transfer matrices, as followed: 

          

2 1 1

3 2 2 2 1 1

4 3 3 3 2 1 1

V = B  V ,

V = B  a = B B  V

V = H  a = B B B  V

                                                                      (65)     

          ⋮ 
         n n-1 n-2 3 2 1 1V = B B ...B B B  V .  
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Natural frequencies, whirling speeds, and mode shapes  
Derived in terms of complex variables, the boundary conditions become:     

        1 1 1 1(0) 0,  (0) 0,     ( ) 0,  ( ) 0n n n n n n
uu E I L E I L  = = = =                            (66) 

Finally, the boundary conditions (66) can be written, respectively, as: 

 

           1 1(0) 0,        ( ) 0n n nV L V =  =                                                         (67) 

 

Using the relationships (65), the boundary conditions can be written in the 

following matrix form: 

 

             1
1

1 3 2 1

(0)
0

( ) ...n n n

V
L B B B B−

 
= 

 
                                                          (68) 

 

thus, the boundary conditions are expressed as a function of 1V , which is the 

constant coefficient column vector for whirling vibrations of the first 

Timochenko shaft segment  (i=1). 

 

             1 11 12 13 14,  ,  ,  
T

V a a a a=                                                                     (69) 

 

According to Equations (65), the column vector 1V  verifies the following 

equation:      

     

            1 1 0C V =                                                                                             (70) 

 

where, 

            
11 14

41 44

  
1

1
n n n-1 3 2 1

Π (0)
C =

Π (L )B ... B B B

 

 

 
   =     

 

K

M O M

L

                                    (71)    

 

Equation (70) represents the characteristic equation. Nontrivial solution for the 

column vector 1V , requires that: 

 

            1 0C =                                                                                              (72) 

 

The above expression is an eigenvalue equation. Natural frequencies  

(𝜔𝑠) of the non-rotating system and critical whirling speeds (𝜔̃𝑠) may be 

obtained by solving the eigenvalue Equation (72), for (Ω = 0)  and (Ω = 𝜔̃𝑠), 

using the modified half-interval method [23].
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According to Natanson [21], in the case of a singular matrix, the column 

vector 1V  in Equation (70) can be estimated up to a multiplicative constant 

, as follow: 

 

             11 11 12 12 13 13 14 14,     ,   ,   a f a f a f a f   = = = =                           (73) 

 

where 1 (  = 1,...,4)f   denote the algebraic complements of corresponding 

elements 1 (  = 1,...,4)   of the matrix 1C . The vibration mode shape of the                                                                                                                        

first shaft segment (i=1) can be expressed as: 

 

        (1) (1) (1) (1)
1 11 12 13 141 1 2 2( ) sin cos sinh coshu x g x g x g x g x   = + + +                                (74)    

                 

with; 

 

         1 11 12 13 14,  ,  , g g g g g=   

 

For the ith Timochenko shaft segment, we get: 

 

         ( ) ( ) ( ) ( )
1 1 2 2( ) sin cos sinh coshi i i i

i iu x x x x x g    =
                           (75) 

 

with; 

                             1 2 3 4,  ,  , 
T

i i i i ig g g g g=    

Using Equation (64), we obtain the following relationships related to the rest 

of the shaft segments: 

 

                          2 1 1 g ,g B=  

                          3 2 2 2 1 1 g   g  g B B B= =
                                                      (76)

                                                                                                       

                          ⋮ 

                          1 1 1 2 3 2 1 1 g  ...    gn n n n ng B B B B B B− − − −= =  

 

 

Description of the Analyzed System  
 

In order to validate the proposed technique, consider a numerical example from 

ref. [16] involving a nonuniform (two-step) Timoshenko shaft composed of six 

segments each with a length of = 0.20 iL m , and diameter
( ) 0.03 s

id m= or 

0.04 ,m carrying three identical rigid disks as depicted in Figure 5. Each disk 
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has a thickness of 0.004 h m=  and diameter of ( )
0.36 .

d
d m=  The material 

properties for the shaft are Young's modulus, 11 22.068 (10 ) /E N m= , shear 

coefficient, 0.75k = , and shear modulus, 11 210.79 0 ) .5  ( /G N m= The mass 

density for the disk (or shaft) material is ( ) ( ) 37850 /d s
i i kg m = = . 

 

  

Figure 5: A nonuniform (two-step) Timoshenko shaft carrying three 

identical rigid disks 

 

The eigenvalue Equation (72) is solved using a developed program in 

Fortran 90 language. The lowest five natural frequencies 𝜔𝑠 ( 1,2,...,5)s =  

obtained from the presented method and those obtained using FEM in [16] are 

listed in Table 1. 

 

Table 1: Comparison of the lowest five natural frequencies 1 5 −  (with 

0 = ) 

 

Mode Natural frequencies s  ( 1,2,...,5)s = , with 0 = ( / )rad s  

 Present Study FEM in Ref. [16] 

1st
 140.72011 140.7202 

2nd
 434.46529 434.4659 

3rd
 925.09181 925.0961 

4th
 1490.61536 1490.6195 

5th
 1697.21160 1697.2179 

        
Table 1 shows that the lowest five natural frequencies obtained from the 

presented approach agree perfectly with those obtained from the conventional  

FEM in [16]. Associated natural mode shapes are depicted in Figures 6-10. It 

is to be noted that the vibration Equations (8a) and (9a) do not contain any term 

likely to limit the amplitudes of free vibrations. For that, all obtained mode 
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shapes are normalized such that the maximum value of each mode is equal to 

unity. 
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Figure 6: The first natural mode shape 

of transverse vibrations 
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Figure 7: The second natural mode      

the shape of transverse vibrations 
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Figure 8: The third natural mode shape 

of transverse vibrations 
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Figure 9: The fourth natural mode      

    the shape of transverse vibrations 
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          Figure 10: The fifth natural mode shape of transverse vibrations    
 

Table 2 lists the lowest five forward and backward whirling speeds  𝜔̃𝑠
𝐹 

and 𝜔̃𝑠
𝐵 ( 1,2,...,5)s = , taking into account the gyroscopic moment of the shaft, 
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obtained from the presented approach and those obtained using FEM and 

another analytical method in [16]. 

From Table 2, it is seen that all values of forwarding and backward 

whirling speeds with the gyroscopic moment of the shaft considered, obtained 

from this article are in remarkably good agreement with those obtained from 

ref. [16] using the conventional FEM and another analytical method.  

Table 3 shows a comparison between the lowest five forward and 

backward whirling speeds 𝜔̃𝑠
𝐹 and 𝜔̃𝑠

𝐵 ( 1,2,...,5)s = of the analyzed system 

with gyroscopic moment of the shaft neglected, obtained from the presented 

approach and those obtained using  FEM and another analytical method in ref. 

[16]. 

  

Table 2: Comparison of the lowest five forward and backward whirling 

speeds, with gyroscopic moment of  the shaft considered 

 

Whirling speeds 𝝎̃𝒔 with  𝛀 = 𝝎̃𝒔 ( / )rad s  

Direction of 

whirl 
Present Study 

FEM in Ref 

[16] 

Analytical method 

in Ref [16] 

Forward 

𝜔̃1
𝐹 147.06340 147.0635 147.0635 

𝜔̃2
𝐹 480.87540 480.8764 480.8763 

𝜔̃3
𝐹 932.46869 932.4732 932.4729 

𝜔̃4
𝐹 5355.19469 5355.6869 5355.2862 

𝜔̃5
𝐹 6216.88169 6217.4720 6216.9834 

Backward 

𝜔̃1
𝐵 134.99264 134.9927 134.9927 

𝜔̃2
𝐵 391.214530 391.2148 391.2148 

𝜔̃3
𝐵 896.275739 896.2792 896.2790 

𝜔̃4
𝐵 960.383015 960.3859 960.3858 

𝜔̃5
𝐵 1068.337680 1068.3425 1068.3423 

 

It should be noticed that in [16], the value of the fourth forward whirling 

speed, 𝜔̃4
𝐹 obtained using an analytical method is not closed to that calculated 

using FEM from the same reference. From Table 3, it is seen that all values of 

forwarding and backward whirling speeds obtained by means of the presented 

approach, with gyroscopic moment of the shaft neglected, are in remarkably 

good agreement with the corresponding ones obtained using the conventional 

FEM in ref. [16]. Figure 11 represents the mode shapes obtained from existing 

literature, (Figure 14 in ref [16]). 
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Table 3: Comparison of the lowest five forward and backward whirling 

speeds, with gyroscopic moment of  the shaft neglected 

 

Whirling speeds 𝝎̃𝒔 with  𝛀 = 𝝎̃𝒔 ( / )rad s  

Direction of 

whirl 
Present Study 

FEM in Ref 

[16] 

Analytical method 

in Ref [16] 

Forward 

𝜔̃1
𝐹 147.05248           147.0526                       147.0526 

𝜔̃2
𝐹 480.64971           480.6507 480.6506       

𝜔̃3
𝐹 932.01115           932.0156                       896.2792    

𝜔̃4
𝐹 5320.47043         5320.9487                       960.3859   

𝜔̃5
𝐹 6172.09668         6172.6673                       6172.1948               

Backward 

𝜔̃1
𝐵 135.00107           135.0011                         135.0011        

𝜔̃2
𝐵 391.34774           391.3481                         391.3480   

𝜔̃3
𝐵 896.60700          896.6104                         896.6103 

𝜔̃4
𝐵 960.55576            960.5586                         960.5585       

𝜔̃5
𝐵 1068.64318          1068.6480                       1068.6478          

 
 

 
     

Figure 11: The five lowest whirling mode shapes obtained by Wu et al. 

 (Figure 14 in ref. [16]) 
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Figure 11 is imported from the reference ([16], Figure 14]). It represents 

the lowest five forward and backward whirling mode shapes obtained using an 

analytical method, represented by solid lines (____) and dotted lines (... ...), 

respectively. It is seen that the fourth and first forward mode shapes, denoted 

by solid squares (    ) and solid circles (    ), respectively, coincide. The same 

finding is noted concerning the fifth and second forward mode shapes, denoted 

by solid stars (     ) and solid triangles (    ), respectively. This allows concluding 

that the fourth and fifth forward mode shapes are not plotted carefully in [16], 

because according to the vibration theory, they should contain three nodes, and 

four nodes, respectively.  

The obtained lowest five forward and backward whirling mode shapes 

using the presented approach are depicted in Figures 12-16.   

 

0,0 0,2 0,4 0,6 0,8 1,0 1,2

0,0

0,2

0,4

0,6

0,8

1,0

Axial distance [m]

N
o
n
d
im

en
ti

o
n
al

 a
m

p
li

tu
d
es

 
/ maxi iu u

                                Backward mode 

                                Forward mode 

Figure 12: The first whirling mode 

shape 
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Figure 13: The second whirling 

mode shape 
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Figure 14: The third whirling mode 

shape 
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Figure 15: The fourth whirling 

mode shape 
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 Figure 16: The fifth whirling mode shape 

 

The first mode shapes of the analyzed system for forward and backward 

whirls plotted in Figure 12 are overlapped and also identical to the first natural 

mode shape in Figure 6. This is because the corresponding first forward and 

backward whirling speeds 𝜔̃1
𝐹 = 147.05248 𝑟𝑎𝑑/𝑠

 
and 𝜔̃1

𝐵 =
135.00107 𝑟𝑎𝑑/𝑠

 
do not differ too much from the first natural frequency 

𝜔1 = 140.72011 𝑟𝑎𝑑/𝑠. The distinction between the whirling mode shapes 

becomes obvious from the second one. The gyroscopic moment of the shaft 

increases the forward whirling speeds and reduces the backward ones. This 

phenomenon is understood as the stiffening and softening of the gyroscopic 

effect. It is noted that the configuration of all mode shapes is symmetrical due 

to the assumption that the analyzed shaft-disks system resting on identical 

bearings has symmetric properties in stiffness and inertia. 

 

 

Conclusion 
 

In this work, whirling vibrations of a Timoshenko type shaft with two steps, 

carrying three identical rigid disks are investigated using an analytical 

approach based on relationships between the vectors of solution coefficients. 

The developed relationships in this work allow an analysis of the effects of 

rotary inertia, shear deformation, and gyroscopic moments on the dynamic 

behavior of the Timohenko shaft-disk system. The computed natural 

frequencies and critical (forward and backward) whirling speeds proved to 

coincide with those obtained using conventional FEM  from the available 

literature (ref. [16]). The obtained numerical results indicate that the analytical 

approach developed in this article provides an accurate calculation of 

eigenquantities such as whirling speeds and mode shapes of rotating stepped 

Timoshenko shaft carrying multiple disks. The given relationships in this work 

can easily take into account a transverse crack and linear model of damping 

and are well-suited to extend to the study of a multi-disk rotor with any number 

of steps on flexible bearing supports. 
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Nomenclature 

,  i iE G  Young’s modulus and shear 

modulus of the ith shaft segment 
2/N m    

, ,y i z i iI I I= = diametric moment of 

inertia of the cross-sectional area 

iS  of the ith shaft segment about  

the y- or z-axis 

,p iI polar moment of inertia of the 

cross-sectional area 
iS  of the ith 

shaft segment  

, ,,d i P iJ J   diametric moment of 

inertia and polar  moment of inertia 

of the ith rigid disk 2kgm 
   

ik   shear correction factor for the ith 

shaft segment 
 

iL  lenght of the ith shaft segment 

 m
 

im  mass of the ith rigid disk (i), 

located at the end of the ith shaft 

segment  kg  

iS  cross-sectional area of the ith 

shaft segment 2m    

, ,( ),  ( )y i z iu x u x  deflection amplitude 

of the cross-sectional centroid  of the 

ith shaft segment, at axial coordinate 

x, in the vertical and horizontal 

directions, respectively  m   

 
 

, ,( , ) ( , ) ( , )i y i z iu x t u x t ju x t= +  complex 

variable representation of rotor deflection 

,, ( )( )
,

y iz i u xu x

x x



 
 slope amplitude of the 

elastic axis of the ith shaft segment at axial 

coordinate x, in the i ix y and i ix z planes, 

respectively  rad  

, ,( ), ( )xy i xz ix x   amplitudes of transverse 

shear angles of  the ith shaft cross section   

at axial coordinate x, in the i ix y and i ix z

planes, respectively  rad  

, ,( , ) ( , ) ( , )i xy i xz ix t x t j x t  = +  complex 

variable representation of the shear angle 

i  mass density of the ith shaft segment  

3/kg m    

 𝜔̃𝑠  whirling speed  /rad s
 

     natural frequency  /rad s  

      rotor speed  /rad s  

, ,( ),  ( )z i y ix x   slope amplitude due to 

bending of the ith shaft cross section  at 

axial coordinate x, in the i ix y and i ix z

planes, respectively  rad  

, ,( , ) ( , ) ( , ),i z i y ix t x t j x t  = −  complex 

variable representation of slope due to 

bending 
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