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ABSTRACT 

 

At the moment, the analyses of postbuckling behavior of thin rectangular 

plates of constant thickness are generally based on von Karman’s large 

deflection equations which make use of stress functions and trigonometric 

variables. These equations are coupled, nonlinear partial differential 

equations of fourth order each. Getting a closed-form solution of these 

equations is near impossible and tedious. The present work presents a 

simplified closed-form general equation using a variational approach for 

large deflection analysis.  The approach adopted here is devoid of Airy’s stress 

functions. A new strain-displacement equation is formulated, and the total 

potential energy equation is minimized. The resulting compatibility equation 

was solved to obtain the general governing stability equation under large 

deflection. This governing equation was applied to a plate simply supported 

all-around using polynomial displacement function and numerical results 

were obtained. To validate the numerical results obtained, they were 

compared with the values obtained by Levy whose results are generally 

acclaimed as exact and with two others. It was observed that the minimum and 

maximum percentage differences were 0% and 41.56% at stress parameters 

3.66 and 21.45 respectively. Also, for deflection to thickness ratio (w/t), the 

present results showed a close agreement with those of Levy with a minimum 

and maximum percentage difference of 0.07% and 41.56% at w/t of 0 and 

3.376 respectively. Importantly, the present result lies between two other 

research results. We, therefore, conclude that the present work is adequate 
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and a new simple closed-form approach to understanding and predicting the 

postbuckling strength of thin rectangular plates. 

 

Keywords: Buckling and Postbuckling Loads; Strain-Displacement 

Relations; Membrane Strain; Total Potential Energy; Direct Variation 

 

 

Introduction 
 

The investigations of postbuckling behavior of thin rectangular plates of 

constant thickness are based on von Karman's large deflection equation which 

makes use of Airy’s stress functions and trigonometric variables. These 

equations are coupled, non-linear partial differential equations of fourth order 

each. Solving these equations for stresses and postbuckling loads is tedious 

and time consuming. But the present work using a variational approach, 

simplifies the large deflection analysis of rectangular thin isotropic plates and 

provides a clear understanding of the postbuckling behavior of plates without 

many simplifying assumptions in the derivation of the equations, and offers a 

quick analysis of plates. Moreso, the use of lightweight plates in aerospace and 

shipbuilding industries is indispensable and their ability to be folded easily to 

various shapes makes them relevant. This article will enhance quick analysis 

and provide reliable data for the advancement of knowledge in this industry. 

 

 

Literature Review 
 

The von Karman’s type nonlinear strain-displacement relations are mostly 

used in large deflection analysis of rectangular plate [1], given here as:  

 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2
+ [

1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑢0

𝜕𝑥
]                                   (1) 

𝜀𝑦𝑦 =
𝜕𝑢

𝜕𝑦
= −𝑧

𝜕2𝑤

𝜕𝑦2
+ [

1

2
(

𝜕𝑤

𝜕𝑦
)

2

+
𝜕𝑣0

𝜕𝑦
]                                  (2) 

 

The first term is the bending strain while the second term in the square 

bracket is the membrane strain. 𝑤 is displacement. The complex nature of the 

membrane strain of the plate in the x or y directions respectively is the major 

difficulty associated with large deflection analysis of the plate. A search of 

available works of literature reveals that little effort had been made to obtain 

equations for middle plane displacement, u0, and v0, along the x and y-axis 

respectively. In the works of [2]–[6] the authors end up assuming a function 
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for u0 and v0. Other authors who assumed functions for u0 and v0 are [7]-[9]. 

Also determining Airy's stress function is another difficult challenge in large 

deflection analysis. Earlier Scholars also assume Airy's stress functions. 

However, recent scholars such as [10]-[12] determined the stress functions 

they used in their various works (post-buckling, free vibration, and pure 

bending analyses of rectangular plates with large deflection respectively). 

Their approaches were so involving, and the expressions for stress functions 

were very lengthy and tedious. Due to these difficulties, most works in this 

area are based on numerical approaches, especially the finite element method. 

In order to circumvent the use of Airy's stress function and avoid arriving at 

the same governing equation introduced by von-Karman, this study presents a 

simplified closed-form approach to the analysis of a rectangular plate with 

large deflection. It will provide great relief to analysts and designers of plated 

structures and saves energy. 

 

 

Methodology  
 

Derivation of the general stability equation of plate under large 
deflection 
Strain-displacement relations of large deflection analysis of rectangular plates 

are given in Equations (1) and (2). In large deflection of the plate, it is assumed 

majorly that the middle surface displacements are not zeros. Consider the 

membrane terms of Equations (1) and (2): 

 

𝜀𝑥𝑥𝑚 =  
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑢0

𝜕𝑥
                                                      (3) 

𝜀𝑦𝑦𝑚 =
1

2
(

𝜕𝑤

𝜕𝑦
)

2

+
𝜕𝑣0

𝜕𝑦
                                                       (4) 

Minimizing Equations (3) and (4) by differentiating with respect to 
𝜕

𝜕𝑥
 and 

𝜕

𝜕𝑦
 

respectively yields: 

 

𝜕𝜀𝑥𝑥𝑚

𝜕(
𝜕

𝜕𝑥
)

= 𝑢0 + 
1

2
(

𝜕𝑤

𝜕𝑥
)

2

= 0  →  𝑢0 =  − 
1

2
(

𝜕𝑤

𝜕𝑥
)

2

               (5) 
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𝜕𝜀𝑦𝑦𝑚

𝜕(
𝜕

𝜕𝑦
)

= 𝑣0 +  
1

2
(

𝜕𝑤

𝜕𝑦
)

2

= 0  →  𝑣0 =  − 
1

2
(

𝜕𝑤

𝜕𝑦
)

2

                 (6) 

Since minus is a constant that minimizes Equations (3) and (4), it shows 

that another constant (which is not minus) shall make Equations (3) and (4) 

not become zeros. However, there is a need to determine the optimum value 

of that constant when the plate loses its bending stiffness and carries the load 

with the help of only membrane resistance. In 2017 [13], Ibearugbulem 

replaced the minus half with an arbitrary constant to obtain Equations (7) and 

(8). 

 

 𝑢0 =  𝑐1 (
𝜕𝑤

𝜕𝑥
)

2

                                                         (7) 

𝑣0 =  𝑐1 (
𝜕𝑤

𝜕𝑦
)

2

                                                         (8) 

The membrane strains were obtained by substituting Equations (7) and (8) into 

Equations (3) and (4) yield: 

 

𝜀𝑥𝑥𝑚 =  (
𝜕𝑤

𝜕𝑥
)

2

  [
1

2
+ 𝑐1]  =    𝑐2 (

𝜕𝑤

𝜕𝑥
)

2

                                      (9) 

𝜀𝑦𝑦𝑚 =  (
𝜕𝑤

𝜕𝑦
)

2

  [
1

2
+ 𝑐1]  =    𝑐2 (

𝜕𝑤

𝜕𝑦
)

2

                                    (10) 

𝑐2 =  
1

2
+ 𝑐1                                                          (11) 

 

Membrane stress  
Assuming that the axial force that generated the deflected shape is only 

uniaxial. Then, the bending stress is defined as: 

 

𝜎𝑏   =  
𝑀

𝐼
𝑦                                                              (12) 

where M is the moment, y is the distance from the middle surface to the 

extreme fibre and I is the second moment of area. For rectangular cross-

section, Equation (12) becomes: 
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𝜎𝑏 =  
6𝑀

𝑏𝑡2
                                                         (13) 

where b is the breadth and t is the thickness of the section. Consider Figure 1, 

the moment is:  

 

 

                                                                                  

        

 

Figure 1: A bent plate with induced in-plane force. 

 

𝑀 = 𝑛𝑡 = (𝜎𝑥  𝑏𝑡)𝑡 =  𝜎𝑥  𝑏𝑡2                                  (14) 

When the plate has lost its bending stiffness and is relying only on membrane 

resistance, the entire bending stress translates to membrane stress, 𝜎𝑚. 

Substituting Equation (14) into Equation (13) yields: 

 

𝜎𝑚 =  
6𝜎𝑥  𝑏𝑡2

𝑏𝑡2
 =  6𝜎𝑥                                          (15) 

Equation (15) is the membrane stress equation. 

 

Strain energy and nonlinear in-plane displacement 
The strain energy of a plate is obtained from the membrane strain in Equation 

(9) and membrane stress in Equation (15) yields: 

 

𝑈𝑚 =
1

2
  ∫ ∫ ∫ 𝜎𝑚𝜀𝑥𝑥𝑚

𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

) =
1

2
  ∫ ∫ ∫ 𝑐2 (

𝜕𝑤

𝜕𝑥
)

2

6𝜎𝑥  

𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

 

=
6𝜎𝑥  𝑐2

2
∫ ∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

                                           (16) 

 

The external in-plane work at any arbitrary point on the plate per unit length 

is commonly given as: 

 

𝑉𝑁𝑥 = −
𝜎𝑥  

2
∫ ∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

                                     (17) 

 

Employing the condition of conservation of energy or minimizing the 

total potential energy arising from the algebraic summation of Equations (16) 

and (17) gives: 

  w 
 

n n 
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   𝑐2 =     
1

6
                                                           (18) 

Substituting Equation (18) into Equation (11) yields: 

  

                   𝑐1  =   −
1

3
                                                         (19) 

 

Substituting Equation (19) into Equations (7) and (8) gives: 

 

 𝑢0 =  −
1

3
(

𝜕𝑤

𝜕𝑥
)

2

                                             (20) 

𝑣0 =  −
1

3
(

𝜕𝑤

𝜕𝑦
)

2

                                              (21) 

Integrating Equations (1) and (2) with respect to x and y respectively yield the 

nonlinear in-plane displacements: 

 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
+ [

1

2

𝜕𝑤

𝜕𝑥

2

+ 𝑢0]                                  (22) 

𝑣 = −𝑧
𝜕𝑤

𝜕𝑦
+ [

1

2

𝜕𝑤

𝜕𝑦

2

+ 𝑣0]                                  (23) 

Substituting Equations (20) and (21) into Equations (22) and (23) simplifies 

the nonlinear in-plane displacements as: 

 

     𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
+ [

1

2

𝜕𝑤

𝜕𝑥

2

−
1

3

𝜕𝑤

𝜕𝑥

2

]  =  −𝑧
𝜕𝑤

𝜕𝑥
+

1

6

𝜕𝑤

𝜕𝑥

2

               (24) 

     𝑣 = −𝑧
𝜕𝑤

𝜕𝑦
+ [

1

2

𝜕𝑤

𝜕𝑦

2

−
1

3

𝜕𝑤

𝜕𝑦

2

]  =  −𝑧
𝜕𝑤

𝜕𝑦
+

1

6

𝜕𝑤

𝜕𝑦

2

               (25) 

To obtain nonlinear strain displacement relations, differentiate 

Equations (24) and (25) with respect to x and y respectively to obtain 

Equations (26) and (27). 

 

𝜀𝑥𝑥 =  −𝑧
𝜕2𝑤

𝜕𝑥2
+

1

6
(

𝜕𝑤

𝜕𝑥
)

2

                                             (26) 
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𝜀𝑦𝑦 =  −𝑧
𝜕2𝑤

𝜕𝑦2
+

1

6
(

𝜕𝑤

𝜕𝑦
)

2

                                             (27) 

The in-plane shear strain with the x-y plane is:  

 

𝛾
𝑥𝑦

=  
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 = 2 [−𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

1

6
(

𝜕𝑤

𝜕𝑥
) (

𝜕𝑤

𝜕𝑦
)]                 (28) 

Equations (26) to (28) are the new nonlinear strain-displacement relations. The 

total potential energy of a thin rectangular plate is given as Equation (29): 

 

Π =
1

2
  ∫ ∫ ∫ (𝜎𝑥𝑥  𝜀𝑥𝑥 + 𝜎𝑦𝑦 𝜀𝑦𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦)

𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

−
𝑁𝑥  

2
∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                                  (29) 

 

The constitutive relations are: 

 

𝜎𝑥 =  
𝐸

1 − 𝑣2
( 𝜀𝑥𝑥 +   𝑣𝜀𝑦𝑦);    

𝜎𝑦 =  
𝐸

1 − 𝑣2
( 𝜀𝑦𝑦 +   𝑣𝜀𝑥𝑥)                               (30𝑎, 𝑏) 

 𝜏𝑥𝑦 =  
𝐸(1 − 𝑣)

2(1 − 𝑣2)
𝛾𝑥𝑦                                                  (30𝑐) 

Substituting Equation (30) into Equation (29) yield Equation (31): 

 

Π =
𝐸

2(1 − 𝑣2)
  ∫ ∫ ∫ [ 𝜀𝑥𝑥

2 +  2𝑣𝜀𝑥𝑥  𝜀𝑦𝑦 +  𝜀𝑦𝑦  2
𝑧

0

𝑏

0

𝑎

0

+ (1 − 𝑣)
𝛾𝑥𝑦 2

2
]  𝑑𝑥𝑑𝑦𝑑𝑧  

−
𝑁𝑥  

2
∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                                (31𝑎) 
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Π =
𝐸

2(1 − 𝑣2)
  ∫ ∫ ∫ [ 𝜀𝑥𝑥

2 +  2𝑣𝜀𝑥𝑥  𝜀𝑦𝑦 +
𝛾𝑥𝑦 2

2
− 𝑣

𝛾𝑥𝑦 2

2
 

𝑧

0

𝑏

0

𝑎

0

+  𝜀𝑦𝑦 2]  𝑑𝑥𝑑𝑦𝑑𝑧 −
𝑁𝑥  

2
∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

            (31𝑏) 

 

 

Substituting Equations (26), (27), and (28) into Equation (31) and carry out 

closed domain integration with respect to z yield Equation (32): 

Π =
𝐷

2
 ∫ ∫ [(

𝜕2𝑤

𝜕𝑥2
)

2

+ 2 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤

𝜕𝑦2
)

2

]
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

+
𝑔𝐷

2 ∗ 36
∫ ∫ [(

𝜕𝑤

𝜕𝑥
)

4

+ 2 (
𝜕𝑤

𝜕𝑥
)

2

(
𝜕𝑤

𝜕𝑦
)

2𝑏

0

𝑎

0

+ (
𝜕𝑤

𝜕𝑦
)

4

] 𝑑𝑥𝑑𝑦 −
𝑁𝑥  

2
∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                 (32𝑎) 

 

𝛱𝐷 =
𝐸𝑡3

12(1 − 𝑣2)
, 𝑔 =  

12

𝑡2
,      𝑔𝐷 =  

𝐸𝑡

(1 − 𝑣2)
                      (33) 

In non-dimensional parameters,  

 

𝑥 = 𝑎𝑅,   𝑦 = 𝑏𝑄,   0 ≤ 𝑅 ≤ 1, 0 ≤ 𝑅 ≤ 1                        (34) 

 

Substituting Equation (34) into Equation (32a) give: 

 

Π =
𝑏𝐷

2𝑎3
 ∫ ∫ [ (

𝜕2𝑤

𝜕𝑅2
)

2

+
2

Ƨ2
(

𝜕2𝑤

𝜕𝑅𝜕𝑄
)

2

+  
1

Ƨ4
(

𝜕2𝑤

𝜕𝑄2
)

2

]
1

0

1

0

𝑑𝑅𝑑𝑄  

 + 
𝑔𝐷

2𝑎3 ∗ 36
∫ ∫ [(

𝜕𝑤

𝜕𝑅
)

4

+
2

𝑆2
(

𝜕𝑤

𝜕𝑅
)

2

(
𝜕𝑤

𝜕𝑄
)

2

+
1

Ƨ4
(

𝜕𝑤

𝜕𝑄
)

4

]
𝑏

0

𝑎

0

𝑑𝑅𝑑𝑄             

−   
𝑆𝑁𝑥  

2
∫ ∫ (

𝜕𝑤

𝜕𝑅
)

21

0

𝑑𝑅𝑑𝑄
1

0

                                                                              (35) 

                                                                   

where,                         𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜    Ƨ =
𝑏

𝑎
                                                   (36)        
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Let rewrite Equation (32a) in this form: 

 

Π =
𝐷

2
 ∫ ∫ [ 

𝜕3

𝜕𝑥3

𝜕𝑤2

𝜕𝑥
+ 2

𝜕3

𝜕𝑥𝜕𝑦2

𝜕𝑤2

𝜕𝑥
+

𝜕3

𝜕𝑦3

𝜕𝑤2

𝜕𝑦
]

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦   

+
𝑔𝐷

2 ∗ 36
∫ ∫ [

𝜕2

𝜕𝑥2
(

𝜕𝑤2

𝜕𝑥
)

2

+ 2
𝜕

𝜕𝑥

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑦
(𝑤2)2

𝑏

0

𝑎

0

+
𝜕2

𝜕𝑦2
(

𝜕𝑤2

𝜕𝑦
)

2

] 𝑑𝑥𝑑 −
𝑁𝑥  

2
∫ ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

         (32𝑏) 

 

Minimizing Equation (32b) with respect to w, u0, v0 based on the 

differential part, gives the governing equation and two displacement 

compatibility equations as presented in Equations (37), (38), and (39) 

respectively. Minimizing Equation 32b with respect to w gives: 

 

𝜕𝛱

𝜕𝑤
= 𝐷 [ 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
]

+
𝑔𝐷

36
[(

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑥2
+  (

𝜕𝑤

𝜕𝑦
)

2 𝜕2𝑤

𝜕𝑥2
+ (

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑦2

+ (
𝜕𝑤

𝜕𝑦
)

2 𝜕2𝑤

𝜕𝑦2
] − 𝑁𝑥  

𝜕2𝑤

𝜕𝑥2
  = 0                                        (37) 

Minimizing Equation 32b with respect to (dw2/dx) gives: 

  

𝜕𝛱

𝜕 (
𝜕𝑤2

𝜕𝑥
)

=
𝐷

2

𝜕

𝜕𝑥
[ 

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
] +

𝑔𝐷

36

𝜕

𝜕𝑥
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0             

For this equation to be true each term must be zero. Hence, for a nontrivial 

solution: 

 

𝑔𝐷

36

𝜕

𝜕𝑥
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0             

Also, for nontrivial solution: 

 

(
𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

= 0                                           (38) 
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Minimizing Equation 32b with respect to (dw2/dy) gives: 

 

𝜕𝛱

𝜕 (
𝜕𝑤2

𝜕𝑦
)

=
𝐷

2

𝜕

𝜕𝑦
[ 

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
] +

𝑔𝐷

36

𝜕

𝜕𝑦
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0      

For this equation to be true each term must be zero. Hence, for a nontrivial 

solution: 

 

𝑔𝐷

36

𝜕

𝜕𝑦
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0    

Also, for a nontrivial solution:  

 

(
𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

= 0                                         (39) 

From Equations (38) and (39): 

 

  (
𝜕𝑤

𝜕𝑥
)

2

= − (
𝜕𝑤

𝜕𝑦
)

2

                                              (40) 

 

The strains of the middle surface of the plate are: 

  

𝜀𝑥𝑜 =  
𝜕𝑢𝑜

𝜕𝑥
= −

1

3
(

𝜕𝑤

𝜕𝑥
)

2

                                      (41) 

𝜀𝑦𝑜 =  
𝜕𝑢𝑜

𝜕𝑦
= −

1

3
(

𝜕𝑤

𝜕𝑦
)

2

                                      (42) 

Substituting Equation (40) into Equation (41) yields: 

 

𝜀𝑥𝑜 =  
𝜕𝑢𝑜

𝜕𝑥
=

1

3
(

𝜕𝑤

𝜕𝑦
)

2

                                          (43) 

Comparing Equation (42) and Equation (43) yields: 

 

𝜀𝑥𝑜 =  −𝜀𝑦𝑜                                                           (44) 
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Substitute Equation (40) into Equation (37) yields: 

 

𝐷 [ 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
]

+
𝑔𝐷

36
[(

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑥2
−  (

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑥2
+ (

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑦2

− (
𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑦2
] − 𝑁𝑥  

𝜕2𝑤

𝜕𝑥2
 = 0      

That is: 

 

𝐷 [ 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
]  − 𝑁𝑥  

𝜕2𝑤

𝜕𝑥2
  = 0             (45) 

The approximate and non-intractable solution of Equation (45) is in the 

polynomial form and given as:  

 

𝑤 = 𝐴(𝑎0 + 𝑎1𝑅 +  
𝑎2

2!
𝑅2 +  

𝑎3

3!
𝑅3 +  

𝑎4

4!
𝑅4)(𝑏0 + 𝑏1𝑄 +  

𝑏2

2!
𝑄2 

    + 
𝑏3

3!
𝑄3 + 

𝑏4

4!
𝑄4)                                                                   (46) 

Equation (46) can be reduced to: 

 

𝑤 = 𝐴ℎ                                                            (47) 

where; 

ℎ = (𝑎0 + 𝑎1𝑅 +  
𝑎2

2!
𝑅2 +  

𝑎3

3!
𝑅3 +  

𝑎4

4!
𝑅4)(𝑏0 + 𝑏1𝑄 +  

𝑏2

2!
𝑄2 

+ 
𝑏3

3!
𝑄3 + 

𝑏4

4!
𝑄4)                                                                     (48) 
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Substitute Equation (47) into Equation (35) yield: 

 

 Π  =
𝑏𝐷𝐴2

2𝑎3
 ∫ ∫ [ (

𝜕2ℎ

𝜕𝑅2
)

2

+
2

𝑆2
(

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+  
1

𝑆4
(

𝜕2ℎ

𝜕𝑄2
)

2

]
1

0

1

0

𝑑𝑅𝑑𝑄 

+    
𝑏𝑔𝐷𝐴4

2𝑎3 ∗ 36
∫ ∫ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

𝑆2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

    
1

0

1

0

+
1

𝑆4
(

𝜕ℎ

𝜕𝑄
)

4

] 𝑑𝑅 −
𝑆𝑁𝑥  𝐴

2

2
∫ ∫ (

𝜕ℎ

𝜕𝑅
)

21

0

𝑑𝑅𝑑𝑄
1

0

            (49) 

 

Minimizing Equation (49) with respect to A yields: 

 

𝜕Π

𝜕𝐴
  =

𝑏𝐷𝐴

𝑎3
 ∫ ∫ [ (

𝜕2ℎ

𝜕𝑅2
)

2

+
2

Ƨ2
(

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+  
1

Ƨ4
(

𝜕2ℎ

𝜕𝑄2
)

2

]
1

0

1

0

𝑑𝑅𝑑𝑄 

+    
𝑏𝑔𝐷𝐴3

18𝑎3
∫ ∫ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

 
1

0

1

0

+
1

Ƨ4
(

𝜕ℎ

𝜕𝑄
)

4

] 𝑑𝑅𝑑𝑄 − Ƨ𝑁𝑥  𝐴 ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

21

0

𝑑𝑅𝑑𝑄
1

0

= 0 (50) 

 

Multiply Equation (50) by  
𝑎3

𝑏𝐷
:       

 

∫ ∫ [ (
𝜕2ℎ

𝜕𝑅2
)

2

+
2

Ƨ2
(

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+  
1

Ƨ4
(

𝜕2ℎ

𝜕𝑄2
)

2

]
1

0

1

0

𝑑𝑅𝑑𝑄 

+    
𝑔𝐴2

18
∫ ∫ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

    
1

0

1

0

+
1

Ƨ4
(

𝜕ℎ

𝜕𝑄
)

4

] 𝑑𝑅𝑑𝑄 − 𝑁𝑥  

𝑎

𝐷

2

∫ ∫ (
𝜕ℎ

𝜕𝑅
)

21

0

𝑑𝑅𝑑𝑄
1

0

= 0                                                                                            (51) 

 

In symbolized form, Equation (51) becomes: 

 

[𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

Ƨ2
+

𝑘𝑏𝑦

Ƨ4
] +

𝑔𝐴2

18
[𝑘𝑚𝑥 +

2𝑘𝑚𝑥𝑦

Ƨ2
+

𝑘𝑚𝑦

Ƨ4
] − 𝑁𝑥  

𝑎

𝐷

2

𝑘𝑁𝑥

= 0                                                                                                                             (52)      

where: 

𝑘𝑏𝑥 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑅2
)

21

0

1

0

𝑑𝑅𝑑𝑄;       𝑘𝑏𝑥𝑦 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄 
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𝑘𝑏𝑦 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑄2
)

21

0

1

0

𝑑𝑅𝑑𝑄;        𝑘𝑚𝑥 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

41

0

1

0

𝑑𝑅𝑑𝑄 

𝑘𝑚𝑥𝑦 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄;       𝑘𝑚𝑦 =  ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

41

0

1

0

𝑑𝑅𝑑𝑄 

𝑘𝑁𝑥 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

21

0

1

0

𝑑𝑅𝑑𝑄                                                             (53𝑎 − 𝑔) 

 

Subscripts b and m denote bending and membrane parts respectively. From 

Equation (52): 

 

𝐾𝑏𝑇 +
𝑔𝐴2

18
𝐾𝑚𝑇 − 𝑁𝑥  

𝑎

𝐷

2

𝑘𝑁𝑥  = 0                                (54) 

where: 

 

𝐾𝑏𝑇 = [𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

Ƨ2
+

𝑘𝑏𝑦

Ƨ4
] ;   𝐾𝑚𝑇 = [𝑘𝑚𝑥 +

2𝑘𝑚𝑥𝑦

Ƨ2
+

𝑘𝑚𝑦

Ƨ4
]        (55) 

Substitute Equation (33) into Equation (54) yield Equation (56): 

 

𝐾𝑏𝑇 +
2

3
(

𝐴

𝑡
)

2

𝐾𝑚𝑇 = 12(1 − 𝑣2) ∗ 𝐾𝑁𝑥

𝑁𝑥  𝑎
2

𝐸𝑡3
                 (56) 

 

𝐾𝑏𝑇 +
2

3
(

𝐴

𝑡
)

2

𝐾𝑚𝑇 = 12(1 − 𝑣2) ∗ 𝐾𝑁𝑥

 𝜎𝑥  𝑎
2

𝐸𝑡2
                     (57) 

where; 

                                      𝜎𝑥  =  
𝑁𝑥  

𝑡
                                                              (58) 

 

Equation (57) can also be written as Equations (58) and (59): 

 

𝜎𝑥  𝑎
2

𝐸𝑡2
=

1

12(1 − 𝑣2)𝑘𝑁𝑥

[ 𝐾𝑏𝑇 +
2

3
(

𝐴

𝑡
)

2

 𝐾𝑚𝑇]                         (59) ∗ 

 

(
𝐴

𝑡
)

2

= 18(1 − 𝑣2) ∗
𝑘𝑁𝑥

𝐾𝑚𝑇

∗
𝜎𝑥  𝑎

2

𝐸𝑡2
−   1.5

𝐾𝑏𝑇

𝐾𝑚𝑇

                         (60) ∗ 
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Equation (59) is the general large deflection stability equation for the thin 

rectangular plate. 

 

 

Numerical Application to SSSS plates using Polynomial 
Analysis 
 

The shape profile, h, for SSSS plate is given as: 

ℎ = ℎ𝑥 ∗ ℎ𝑦 = (𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4)                                (61)  

  

𝑤ℎ𝑒𝑟𝑒, ℎ𝑥 = (𝑅 − 2𝑅3 + 𝑅4);   ℎ𝑦 = (𝑄 − 2𝑄3 + 𝑄4)                    (62)  

                              

Evaluation of stiffness are as follows: 

𝑘𝑏𝑥 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑅2
)

21

0

1

0

𝑑𝑅𝑑𝑄 =    ∫ (
𝜕2ℎ𝑥

𝜕𝑅2
)

2

𝜕𝑅 ∗
1

0

 ∫ ℎ𝑦
2𝜕𝑄

1

0

 

=  0.2361905 

 

𝑘𝑏𝑥𝑦 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄 = ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

2

𝜕𝑅 ∗
1

0

 ∫ (
𝜕ℎ𝑦

𝜕𝑄
)

2

𝜕𝑄
1

0

  

= 0.2359184 

 

𝑘𝑏𝑦 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑄2
)

21

0

1

0

𝑑𝑅𝑑𝑄 =  ∫ ℎ𝑥
2𝜕𝑅 ∗

1

0

 ∫ (
𝜕2ℎ𝑦

𝜕𝑄2
)

2

𝜕𝑄
1

0

 

=  0.23619048 

 

𝑘𝑚𝑥 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

41

0

1

0

𝑑𝑅𝑑𝑄 =   ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

4

𝜕𝑅 ∗
1

0

 ∫ ℎ𝑦
4𝜕𝑄

1

0

= 0.001299769 

 

𝑘𝑚𝑥𝑦 = ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄

= ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

2

. ℎ𝑥

2

𝜕𝑅 ∗
1

0

 ∫ (
𝜕2ℎ𝑦

𝜕𝑄2
)

2

. ℎ𝑦
2𝜕𝑄

1

0

 

=  0.000138178 
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𝑘𝑚𝑦 =  ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

41

0

1

0

𝑑𝑅𝑑𝑄 =  ∫ ℎ𝑥
4𝜕𝑅 ∗

1

0

 ∫ (
𝜕2ℎ𝑦

𝜕𝑄2
)

4

𝜕𝑄
1

0

 

=  0.001299769 

𝑘𝑁𝑥 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

21

0

1

0

𝑑𝑅𝑑𝑄 = ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

2

𝜕𝑅 ∗
1

0

 ∫ ℎ𝑦
2𝜕𝑄

1

0

  

= 0.023900227    
 

Table 1: Summary of stiffness values 

 
 

SSSS 
𝑘𝑏𝑥 𝑘𝑏𝑥𝑦  𝑘𝑏𝑦  𝑘𝑚𝑥  𝑘𝑚𝑥𝑦  𝑘𝑚𝑦  𝑘𝑁𝑥 

0.23619 0.235918 0.2361905 0.0012998 0.000138 0.0012998 0.023900 

 

Substituting these values in Equation (59), yield the results as presented in 

Table 2. 

 

 

Results and Discussion 
 

This work has formulated a new membrane stress equation given in Equation 

(15) which aided in the determination of the constant 𝐶1. Also, the new 

nonlinear strain-displacement relation has been formulated as given in 

Equations (26) to (28), which is different from those in the literature. 

Furthermore, a simplified stress parameter equation has been derived as 

Equation (59). This is the governing linear/nonlinear stability equation. This 

equation is unique and applicable to all boundary conditions of plates. At w/t 

equals zero, the equation reduces to the critical load. Table 1 presents the 

stiffness values of the plate simply supported all-round (SSSS). 

The numerical results obtained from this work for 

buckling/postbuckling load coefficients for an SSSS plate used as a case study 

are presented in Table 2.  These results are for the deflection to thickness ratio 

(w/t) of 0 to 4 and aspect ratio (b/a) of 0.5 to 2.  This is because it was noticed 

from the results that the plate claimed to possess some fictitious high strength 

within the aspect ratio of 0.1 to 0.5. This may not be true and may lead to 

failure if considered for design. Therefore, for large deflection analysis, the 

applicable aspect ratio is from 0.5 upward. 
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Table 2: Numerical Values of Coefficient of Buckling/Postbuckling Load, η, 

for given values of   
𝑤

𝑡
  for SSSS plate 

 
 

 

 

w/t 

 

 

 

A/t 

𝑁𝑥  =  𝜂
𝐷

𝑎2 , Ƨ =
𝑏

𝑎
, 𝑣 = 0.3, 1.3 ≤ Ƨ ≤ 2.0;   

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 

𝜂          

0 0 246.97 140.97 91.33 64.86 49.32 39.51 32.95 28.36 

0.25 2.56 251.21 143.19 92.66 65.75 49.98 40.03 33.39 28.75 

0.5 5.12 263.94 149.82 96.65 68.44 51.97 41.61 34.72 29.91 

0.75 7.68 285.15 160.88 103.31 72.93 55.28 44.24 36.92 31.84 

1 10.24 314.85 176.36 112.62 79.21 59.91 47.92 40.02 34.56 

1.25 12.8 353.03 196.27 124.60 87.28 65.87 52.65 43.99 38.04 

1.5 15.36 399.69 220.60 139.23 97.14 73.16 58.43 48.85 42.30 

1.75 17.92 454.85 249.35 156.53 108.80 81.77 65.27 54.59 47.34 

2 20.48 518.48 282.53 176.49 122.25 91.70 73.16 61.22 53.15 

2.25 23.04 590.60 320.13 199.11 137.50 102.96 82.10 68.73 59.73 

2.5 25.6 671.21 362.12 224.39 154.54 115.54 92.09 77.12 67.09 

2.75 28.16 760.30 408.61 252.34 173.37 129.45 103.13 86.40 75.23 

3 30.72 857.87 459.48 282.94 194.00 144.69 115.23 96.56 84.14 

 

To validate this mathematical model, the numerical results of this work 

for SSSS were compared with the works of [3], [10], [14]. The values of the 

stress parameter and w/t of this present work were compared with those 

obtained by [3], for Poisson ratio of 0.316 in Tables 3 and 4. The reason for 

comparing with [3] is that his results have been acclaimed as the exact solution 

to the von Karman large deflection equation [10], and his pattern of result 

presentation, that is in terms of stress parameter and w/t, is the same with ours. 

This makes it easier to compare. The deflection to thickness ratio (w/t) values 

for the given values of stress parameter 
𝜎𝑥  𝑎

2

𝐸𝑡2  indicates that the present values 

agreed closely with those of [3] from the start with a minimum and maximum 

percentage difference of 0% and 41.56% at stress parameter  (
𝜎𝑥  𝑎

2

𝐸𝑡2  ) of 3.66 

and 41.56 respectively, and are lower bound to those of [3]. Even though the 

percentage difference is a bit high at higher values of w/t, this new equation is 

considered to have predicted adequately the postbuckling behavior of the plate. 

The divergence may be attributed to the differences in approach and 
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simplifying assumptions made by Levy. Because his results are even higher 

than the other two research works as well. 

 

Table 3: Deflection for given values of stress parameter 

 

Ƨ = b/a = 1, 𝝂 = 0.316 Present 
Levy  

(1942) 
 

𝜎𝑥  𝑎
2

𝐸𝑡2
 A/t w/t w/t % diff. 

3.66 0.5833839 0.056971087 0 0 

3.72 2.9012933 0.283329422 0.25 13.33177 

3.96 6.3817056 0.623213437 0.498 25.14326 

4.34 9.5854864 0.936082660 0.743 25.9869 

4.87 12.7761437 1.247670287 0.984 26.79576 

5.51 15.7919690 1.542184473 1.220 26.40856 

6.30 18.8609553 1.841890169 1.450 27.02691 

7.22 21.8994409 2.138617278 1.673 27.83128 

8.24 24.8374180 2.425529102 1.889 28.40281 

9.38 27.7554226 2.710490490 2.101 29.00954 

10.61 30.5932245 2.987619581 2.303 29.72729 

11.99 33.4920916 3.270712072 2.498 30.93323 

13.48 36.3634865 3.551121733 2.687 32.15935 

14.97 39.0241734 3.810954430 2.871 32.73962 

16.79 42.0463253 4.106086456 3.044 34.89115 

18.77 45.1047663 4.404762338 3.212 37.13457 

21.45 48.9409851 4.779393077 3.376 41.5697 

 

Also, Figure 1 showed a comparison of values of 

buckling/postbuckling load coefficient from the present study with those 

available in works of literature [10][14]. It is observed that the present work 

lies in between two other results [10][14]. This further proves the adequacy of 

this new model. It’s also indicated that postbuckling load increases as w/t 

increase. The results further indicated a gradual increase in the strength of a 

plate beyond the yield point; this agreed with plate behavior under in-plane 

load, unlike column. The present equation is conservative when compared to 

those of [3] and [14].  This provides much reliability to its usage. Based on the 

fact that this model predicts results that are lower than those of [3] and [14], 

and higher than those of [10], therefore the somehow large percentage 

difference observed as the w/t increases when compared with [3] is not a matter 

to worry about, since the predicted post buckling strength of the plate is not 

above the ones predicted by Levy. Besides the predicted strength by [10] are 
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even much lower than those of this work. The approach used is simple and the 

governing model applies to all boundary conditions using both polynomial and 

trigonometric displacement shape functions. The use of the new model is easy 

and the process can be reproduced easily too. The present approach is devoid 

of so many simplifying assumptions which makes the results more adequate. 

This will ease the complex problem of large deflection of plate analysis. 

Table 4: Stress Parameter for given values of deflection 

 

Ƨ = b/a = 1, 𝝂 = 0.316 Present Levy (1942)  

w/t A/t 
𝜎𝑥  𝑎

2

𝐸𝑡2  
𝜎𝑥  𝑎

2

𝐸𝑡2  % diff. 

0 0 3.65747186 3.66 0.06907487 

0.25 2.56 3.70615428 3.72 0.37219672 

0.498 5.09952 3.85064683 3.96 2.76144377 

0.743 7.60832 4.08747318 4.34 5.81859033 

0.984 10.07616 4.41166462 4.87 9.41140415 

1.220 12.4928 4.81681453 5.51 12.5804984

6 1.450 14.848 5.29514854 6.3 15.9500231

4 1.673 17.13152 5.83761015 7.22 19.1466737

9 1.889 19.34336 6.43690401 8.24 21.8822328

8 2.101 21.51424 7.09577581 9.38 24.3520702

8 2.303 23.58272 7.78870816 10.61 26.5908749

9 2.498 25.57952 8.51792801 11.99 28.9580649

9 2.687 27.51488 9.28124113 13.48 31.1480628

7 2.871 29.39904 10.07781953 14.97 32.6798962

8 3.044 31.17056 10.87488319 16.79 35.2299988

4 3.212 32.89088 11.69353304 18.77 37.7009427

9 3.376 34.57024 12.53510179 21.45 41.5612970

3  
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Figure 1: The relationship between buckling/postbuckling load coefficient 

with w/t for SSSS plate. 

 

 

Conclusion and Recommendations 
 

From the above analysis, the following conclusions are made. 

i. That the new nonlinear strain-displacements relations have been 

derived. The general governing stability equation under large deflection 

has been derived too. 

ii. That the simplified approach adopted in this work to derive and solved 

the postbuckling problem is straightforward and devoid of so many 

assumptions and Airy’s stress function. This is a new and different 

approach from the existing attempts in literature which are based on von 

Karman’s large deflection equation and gives a better understanding of 

the postbuckling behavior of thin rectangular isotropic plates. 

iii. That the derived equation is adequate for predicting the postbuckling 

strength of rectangular plates and applies to various boundary 

conditions of the plate and various ductile plate materials. 

Therefore, the recommendation that the present general 

buckling/postbuckling equation for the analysis of thin plates is adequate and 

should be used for easy, faster, and accurate analysis of postbuckling strength 
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of thin rectangular plates. Further, this simplified approach should be extended 

to orthotropic and anisotropic plates, as well as for thick plates. 
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