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Abstract Article Info 

Water disruption has always been a major issue in Malaysia. The reason for the frequent 
water disruption is due to the shutdown of water treatment plant (WTP) for unable to 
process contaminated raw water from the river. In wastewater treatment plant (WWTP), 
main source of ammonia is from the breakdown of proteins and amino acids in organic 
waste. Typically, ammonia is not fully removed from the WWTP and most of the ammonia 
is being discharged together with the plant effluent into the river streams. High levels of 
ammonia in the water exerts an oxygen demand which causes oxygen depletion. Hence, 
affecting the aquatic ecosystem and creates a toxic environment for the aquatic life. 
Biological treatment is known to be the most cost saving method as it only constructs of 
simple components, chemical free treatment and producing no harm by-products which 
later cause cost increment for additional treatment. Furthermore, biological treatment is 
capable in producing high quality treated drinking water that meets the standard water 
guidelines and regulations. In this paper, the aim is to conduct an overview on the 
application of biological treatment as an alternative treatment method of ammonia removal 
in water and wastewater treatment plant. This overview presents the cohesive approach of 
biological treatment in water and wastewater treatment plant, source of ammonia 
pollution, standard implies on ammonia concentration to control potential hazards, 
reported cases and recent pollution status of ammonia globally. In addition, the use of an 
artificial intelligence for model prediction and control strategies for water treatment have 
been included in this overview. 
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1.0 Introduction 

The scarcity of clean water resources should be our 
utmost attention facing the new era of massive climate 
changes, mass production and global pandemic. 
Malaysia has faced water pollution for years now, 
caused by biochemical oxygen demand (BOD), 
ammoniacal nitrogen (NH3–N) and suspended solids 
(SS) which serve as the major pollutants in Malaysia’s 
rivers and lakes (Yuk et al., 2015). Urbanisation is 
often related to industrialisation that gives rise to many 
employment opportunities. This is due to the high 
demand for labour. However, the impact of industrial 
revolution and the increase in human population have 
caused the environment to deteriorate. One of the 
environmental impacts is increased water pollution and 
waste disposal. River pollution is often caused by the 
discharge of domestic sewage, industrial effluents, 

rapid urbanisation and agricultural activities (Farid et 
al., 2016; Suratman et al., 2015; Zhang et al., 2018).  

River pollution cannot be taken lightly as it can 
cause water disruption in a community. Ammonia 
pollution in Johor had caused shutdown of treatment 
plant and water supply was being cut to 222,000 
consumers (Leong, 2017). A study was conducted on 
analysing the problems of ammonia and manganese in 
Malaysian drinking water treatments. Based on the 
assessment, it was reported that three drinking water 
treatment plants (DWTP) had received high 
concentration of ammonia from the raw water (Hasan 
et al., 2011). Raw water is defined as untreated, 
unprocessed, unfiltered, or unprocessed natural water 
such as groundwater, spring water, rainwater, or water 
from streams, lakes and rivers (Nall, 2018; Young, 
2018). Ammonia is toxic substances that can affect the 

An overview of the biological ammonia treatment, model prediction, and control 
strategies in water and wastewater treatment plant 



F. Subari et al./ MJCET Vol. 5(1) (2022) 8–28 

9 

human health. Although at low concentration of 
ammonia in water is non-toxic to human, but long-term 
ingestion of drinking water containing more than  
one mg/L (ppm) ammonia may lead to ammonia 
poisoning and can cause damage to our internal organ 
systems. Access to clean drinking water is a major 
concern nowadays. The raw water quality is mainly 
influenced by the presence of pollutants such as 
pathogens (bacteria, fungi, viruses, and parasites), 
inorganic compounds (magnesium, nitrate, chloride, 
sulphate, sodium, iron), and organic material (sludge) 
in the water supply (Al-Mamun & Zainuddin, 2013). 
The presence of ammonia can be detected through 
unpleasant smell like urine or sweat. There are many 
approaches to remove ammonia in WTP and WWTP 
and some of the known methods are ion-exchange, air 
stripping, biological treatment, microwave radiation, 
supercritical oxidation (Adam et al., 2019), biological 
sand filter (BSF), biological activated carbon (BAC), 
trickling filter, biological aerated filter (BAF), 
membrane bioreactor (MBR), moving bed biofilm 
reactor (MBBR) and fluidised bed biofilm reactor 
(FBBR) (Abu Hasan et al., 2020; Karri et al., 2018; 
Mook et al., 2012). Water treatment technologies 
widen and create more accessibility to clean water. 
However, even with the current treatment technologies, 
there are still millions of people who lack access to 
clean water especially those in the least developed 
countries who may suffer from infectious diseases 
including diarrhoea, hepatitis A, typhoid, polio, and 
cholera. This problem may also aggravate malnutrition 
and childhood stunting. Without access to clean 
drinking water, a person is forced to rely on untreated 
surface water or contaminated wells.  

Water treatment can be conducted either in 
households or in a water treatment facility. For 
household water treatment systems, the methods that 
are commonly used are boiling, household slow sand 
filter, and domestic chlorination. Meanwhile, 
community water treatment system involves storage 
and sedimentation, up-flow roughing filter, slow sand 
filtration, and chlorination in piped water-supply 
systems (World Health Organization, 2018).  

A general water treatment plant consists of five 
major processes that are coagulation and flocculation, 
sedimentation, filtration, disinfection, and storage – to 
treat drinking water sources. The treatment starts from 
the pumping station, where the pump draws water from 
reservoirs, streams, lakes, or rivers. Water then travels 
by pipelines from the pumping station to the treatment 

facility. The first step of the treatment process would 
be removing sediments and particles from the raw 
water with the help of coagulants such as liquid 
aluminium sulphate (alum) and other chemicals. 
Coagulants cause particles in the water to stick together 
and form flocs, which are easier to remove by settling 
or filtration as it will sink to the bottom during 
sedimentation (Owodunni & Ismail, 2021). During 
sedimentation, water flows slowly in the sedimentation 
tanks causing the floc to settle to the bottom due to its 
weight. Sludge is formed after the floc has been 
collected at the bottom of the tank. Since the flocs are 
not entirely removed by sedimentation, the clear water 
on top will then pass-through filters which are made of 
layers of sand, gravel, charcoal, and crushed anthracite 
to remove fine sized particles such as dust, parasites, 
bacteria, viruses, and any remaining sediments. The 
last stage of water treatment is disinfection. Water is 
disinfected with a small amount of chloramine or 
chlorine-based compounds such as chlorine dioxide or 
monochloramine aim to kill bacteria or 
microorganisms that are present in the water. In 
addition, chlorination is an effective method to remove 
ammonia in drinking water (Zhang et al. 2019). 
Another method of disinfecting water is by ozone 
treatment. Ozone treatment involves pumping an 
electric current through the water that causes oxygen 
molecules to disassociate and combine with a free 
oxygen molecule forming ozone (O3). Ozone is a 
strong oxidant and causes microbes cell walls to leak 
rapid cell decomposition and overall damage to cells. 
Hence, pathogenic (disease-causing) organisms are 
destroyed. Chlorination is much preferable than ozone 
because it is cheap, an effective disinfectant, and 
residual chlorine levels remained in the tap water can 
kill any contaminants that might get introduced after 
leaving the treatment plant. Lastly, the treated water is 
stored in a closed tank or placed in a reservoir before 
being distributed to homes and businesses in the 
community (Mahajan, 2021). Fig. 1 shows the process 
of treating drinking water in a water treatment facility.  

A wastewater treatment plant is a facility that is 
designed to treat industrial wastewater for it to be 
safely discharged back into streams or other receiving 
waters, or for reuse (Environmental Protection Agency 
(EPA), 1998). There are primary and secondary 
treatment in treating wastes. In the primary treatment, 
the wastewater will flow through a screen, where large 
floating objects that might clog pipes or damage 
equipment are removed. 
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After the sewage has been screened, it passes into a grit 
chamber, where cinders, sand, and small stones settle 
to the bottom. The sewage then enters a sedimentation 
tank to remove any remaining organic and inorganic 
matter along with other suspended solids. Sludge is 
formed when the suspended solids gradually sink to the 
bottom Meanwhile, secondary treatment is designed to 
substantially degrade the biological content of the 
waste through aerobic biological processes in a way 
that it can be done with biofiltration, aeration and 
oxidation ponds. Biofiltration employs contact filters, 
sand filters, or trickling filters to ensure that any 
additional sediment is removed from the wastewater. 

Aeration is a long process where it increases the 
saturation of oxygen by introducing air to the 
wastewater. It is an effective process that involves 
mixing wastewater with a solution of microorganisms 
and is then aerated for up to 30 hours to ensure results. 
Oxidation ponds are usually used during warm 
climates. It utilises natural water bodies such as 
lagoons, allowing wastewater to pass through for a 
period before being retained for two to three weeks. 
Instead of using trickling filters, activated sludge is 
more preferable as it speeds up the rate of waste 
decomposition in water by bringing together sewage, 
oxygen and sludge with bacteria. The activated sludge 
process involves high concentration of microorganisms 
(bacteria, protozoa and fungi) to degrade organics and 
remove nutrients from wastewater, producing quality 
effluent (Peavy et al., 2007). Fig. 2 illustrates two 
stages of treating wastewater in a wastewater treatment 
facility.      

Common ammonium treatment used in water 
industry is physiochemical treatment such as ion 
exchange, activated carbon, adsorption, chemical 
precipitation, air stripping, membrane filtration, break-
point chlorination, and electrochemical technique 
(Karri et al., 2018). Other treatment such as biological 
treatment is available however mostly applied in 
developed country. Perception towards how effective 
the latter treatment impacted its usage and involvement 
of microorganism in the treatment create cautiousness 
especially in drinking water treatment industry 
(Treacy, 2019). Biological treatment involves the 
usage of bacteria that aids the decomposition of 
ammonia through oxidation process (Adam et al., 
2019). It forms no by-products and does not require 
further treatment. Thus, the cost for this operation is 
lower than physicochemical treatment (Mook et al., 
2012). 

One of the biological treatments that will be further 
studied is the application of biosand filter (BSF) in 
treating ammonia in drinking water and wastewater to 
ensure the production of clean drinking water and 
effluent. BSF is an adaptation of the slow sand filter 
that can be built on a smaller scale, which is often used 
in households or by the community to gain access to 
clean drinking water. The BSF is said to be a promising 
technology according to most studies and it is proven 
to be operated at the lowest cost. The BSF has also 
shown that it is capable to produce high quality 
effluents which met the standards of drinking water 
quality (Liu et al., 2020; Lakshmi et al., 2012).  

Fig. 1: Water treatment process steps. 

Fig. 2: Primary and secondary treatment of wastewater 
treatment plant 
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In order to enhance the performance of the 
treatment plants besides the use of an efficient filtration 
system, there are several control strategies and 
prediction models that are widely used in the industrial 
control applications such as Proportional, integral, and 
derivative (PID) controller, artificial neural network 
(ANN), and model predictive control (MPC). The 
conventional PID controller is a typical control system 
used to regulate the parameters such as temperature, 
pressure, flow, and other process variables in industrial 
control applications. ANN is an advanced computing 
system that is generally used for predicting output 
values for given input parameters while MPC is also a 
control algorithm that serves the same function as ANN 
but with addition of controlling the process while 
satisfying a set of constraints.  

Many studies reported on the removal of 
ammonia/ammonium from water/wastewater. They 
also have reported on several process control strategies 
applied in WWTP and WTP. However, few papers to 
our knowledge reviewing on the implementation of an 
ammonia treatment method with a process control 
system in a WTP or WWTP as most of the reviews 
were focusing on the treatment method and process 
control strategy separately. Therefore, to close this 
knowledge gap, this paper reviews on the effectiveness 
of the biological treatment in removing and reducing 
the concentration of ammonia from contaminated 
water along with the effectiveness of the process 
control system in water and wastewater treatment 
plant.  

This paper will enhance the knowledge on the 
variables that influence the performance of biological 
treatment in ammonia removal and concentration 
reduction, the robustness of advanced controller as a 
predictive model in WTP and WWTP and how the 
hybridisation of a PID controller can obtain better 
results in terms of tuning the parameters of a WTP and 
WWTP than the basic PID controller. 

2.0 Ammonia in water resources 

Ammonia is an inorganic compound that is broadly 
used in various industrial processes. It is often used as 
a fertiliser and refrigerant. It occurs naturally but 
sometimes they are also produced by human activities 
(National Center for Biotechnology Information, 
2021). Ammonia is highly soluble in water, and it 
exists in two forms: non ionised ion (NH3) and 
ammonium ion (NH4

+). The ammonium ion is found to 
be more abundant in water compared to the non-ionised 

form (Park et al., 2018). NH3 is highly toxic to aquatic 
life and to human health as it is soluble in lipid that 
enables it to pass through biological membranes easily 
(Adam et al., 2019). For humans, long-term exposure 
and ingestion of ammonia compounds may lead to 
various respiratory problems such as bronchiolitis, 
laryngitis, pulmonary oedema, tracheobronchitis, and 
bronchopneumonia (Tonelli & Pham, 2009), lung 
damage or death. According to the World Health 
Organization (World Health Organization, 2003), the 
limit for ammonium concentration in drinking water is 
0.5–5 mg/L (European Food Safety Authority (EFSA), 
2012). Consuming more than 33.7 mg of ammonium 
ion per kg of body weight per day can influence the 
body’s metabolism by shifting the acid-base 
equilibrium, disturbing glucose tolerance, and reducing 
tissue sensitivity to insulin (World Health 
Organization, 2003). Excessive presence of ammonia 
in water can lead to the acceleration of eutrophication 
process in rivers and lakes. This will cause the 
depletion of dissolved oxygen, hence creating a toxic 
environment to the aquatic lives. Naturally, in 
industrial wastewater, the ammonia content range from 
5 to 1000 mg/L and 10 to 200 mg/L in municipal 
wastewater (Adam et al., 2019). In order to determine 
the toxicity of ammonia, the pH and temperature must 
be measured as the ratio of both NH3 and NH4

+ in 
aqueous solution depends on those two variables.  

Human body requires more than 70% of water for 
cells, organs and tissues to function well. Good quality 
of drinking water is in dire while reserving its resources 
must be taken care more seriously. Nowadays, water 
resources are threatened with ammonia pollution 
because of improper industrialisation management, 
which, have been reported elsewhere worldwide. 
According to Verma & Saksena (2010), water pollution 
at Kalpi (Morar) river and Gomati River in Uttar 
Pradesh, India was considered extremely polluted, and 
the water quality exceeded the allowed limits of 
drinking water standards which was due to rapid 
urbanisation and industrialisation. According to Hasan 
et al. (2011), frequent water shortage in certain areas is 
due to the raw water repeatedly being contaminated 
with NH3–N which later cause the shutdown of 
Malaysian DWTPs. 

Nitrogen was a major pollutant in terrestrial 
ecosystems which was caused by human activities such 
as fertiliser application, fossil fuel consumption and 
leguminous crop production, which accelerated 
nitrogen in the soil, water and atmosphere (He at al., 
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2011). The degradation of water quality correlated with 
nitrate leaching from agricultural soils. Juahir et al. 
(2011) stated that the main sources of river pollution 
are from sewage disposal, discharges from small- and 
medium-sized industries and earthwork activities and 
in different due caused, approximate of five million 
people had lost their lives due to consuming unsafe 
water that contains bacterial pathogens (Mwabi et al., 
2011). 

In a different study, Fu et al. (2012) reported that 
the presence of ammonia and ammonium ions in water 
sources originated from human activities in the urban 
areas, metabolic, agricultural, and industrial processes, 
and from disinfection with chloramine. In surface 
water, it was more related towards hydrogeology and 
climate change. Further study by Dubey & Ujjania, 
(2013) found out that nearly 70% of surface waters in 
India had been heavily polluted due to the discharge of 
domestic sewage and industrial effluents into rivers, 
streams, as well as lake. Similar study conducted in the 
water pollution in Haihe River Basin, China was 
caused by the discharge of industrial and domestic 
wastewater. It was also revealed that ammonia level in 
Haihe River was as high as 61,700 tonnes (Wang et al., 
2014). Many developed countries, as well as 
developing countries are suffering from ammonia 
pollution (refer Table 1). Table 1 presents cases of 
ammonia pollution worldwide. In countries like China, 
the ammonia concentration seems to vary according to 
the seasons. The source of pollution and the 
concentration of ammonia in each case are shown in 
Table 1. 

As cases of ammonium pollution surge, more 
stringent enforcement should be imposed. Generally, 
Water Standard is regulated to ensure highest quality 
of water. Malaysia has two standards in regulating the 
quality of raw and treated drinking water. As a 

comparison, the standard limit for NH3–N in raw water 
is below than 1.5 mg/L while for treated water is below 
than 1.5 mg/L. The European communities, the 
allowable concentration for NH3–N is below than 
0.5 mg/L. Meanwhile in countries like the USA and 
Canada, there are no regulated guidelines NH3–N 
concentrations in water because the contaminant was 
found to be low in raw and treated water (Hasan et al., 
2011). 

3.0 Treatment technologies of ammonia removal in 
drinking water treatment and wastewater 
treatment plant 

Biological treatment has been widely applied in 
both municipal and industrial wastewaters, dominantly 
for pre-denitrification in activated sludge systems 
(Capodaglio et al., 2015). The application of the 
biological process is to produce clean and safe drinking 
water and it is totally dependent on non-pathogenic 
bacteria that acts as a catalyst for biochemical 
oxidation. The oxidation process will reduce the 
pollutants in contaminated drinking water and produce 
biologically stable water to prevent the growth of 
microorganisms in the water distribution system (Abu 
Hasan et al., 2020).  

Other than biological treatment, another vast 
method in treating ammonium in water treatment 
industry is physicochemical methods such ion 
exchange, membrane filtration, chemical precipitation, 
adsorption, air stripping, break-point chlorination and 
aeration (Karri et al., 2018). Generally physiochemical 
method offering economically viable treatment 
facilities with great ammonium removal. However, it 
is limited to certain qualities of raw water and 
producing harmful by products such as brine in ion 
exchange (Adam et al., 2019; Mazloomi & Jalali, 
2016), disinfection by product during chlorination 

Table 1: Source of ammonia pollution 

Cases Source of pollution Ammonium concentration(mg/L) Reference 

Malaysia (2011) 
Domestic and industrial 
effluents and sludge 
discharge 

The lowest and highest NH3–N concentration: 
• (2007): −0.01 mg/L and 0.7 mg/L
• (2009): −0.02 mg/L and 2.27 mg/L

Hasan et al. (2011) 

China (2012) Polluted urban canal From June to September, 3.89 mg/L Feng et al. (2012) 

China (2018) Rapid economic 
development 

• Highest during winter (0.82–2.76 mg/L of AN).
• Lowest during summer (0.36–0.78mg/L of AN).

Zhang et al. (2018) 

Dhaka city 
(2016) 

Domestic, industrial, 
agricultural, and other 
wastes 

• NH3–N concentrations in dry season: 34.0–6.35 mg/L
• Monthly average of maximum and minimum NH3–N

concentrations: 7.6 mg/L and 0.12 mg/L.
Hossain et al. (2016) 
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(Charrois & Hrudey, 2007), produces salt precipitation 
during supercritical water oxidation (Bermejo et al., 
2008; Du et al., 2013) etc. The physicochemical and 

biological methods for ammonia removal in water and 
wastewater including the removal efficiency, 
advantages and disadvantages are listed in Table 2. 

Table 2: Physicochemical and biological methods from ammonia removal in water and wastewater 
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Biological treatment mostly co-integrated with 
other method to enhance removal capabilities and 
overcome its deficiency. Early application of 
biological technology has evolved from using 
separated reactors for nitrification and denitrification 
process to single reactor both in anoxic and aerobic 
environment. Sequencing batch reactor (SBR) later 
gained attention from researchers for its simplicity in 
design and remarkably nitrogen removal with excellent 
sludge settling capacity (Bernet & Sperandio, 2009). 
Wastewater treatment plant common adopted 
anaerobic ammonium oxidation (anammox) to remove 
ammonia. Anammox process applied in reactor with 
different arrangement such as closed sponge-bed 
trickling filter with high ammonia removal 82–84% 
(Sánchez et al., 2015). Mattson et al. (2018) studied the 
implementation of submerged attached growth reactors 
for cold-weather ammonia removal where high 
ammonia removal was observed. Most of these 
treatment systems showed limited allowable nitrogen 
loading rates, thus they were principally directed to 
remove nitrogen from low-strength wastewaters 
(Chan-Pacheco et al., 2021).  

Recent study lingered on the possibilities of 
combining annamox process with alternative electron 
acceptors such as sulphur, ferric iron, and anodes in 
microbial cells (anodic anammox) (Chan-Pacheco et 
al., 2021). Zhu et al., (2022) conducted a study of 
anaerobic ammonium removal with Fe (III) (feammox) 
reduction in the up-flow sludge blanket reactor. The 
ammonium removal was attributed to the carbon 
sources and ammonium acts as electron donors for 
Fe (III) reduction. Ammonium removal improve 
significantly whilst energy cost for ammonium 
removal could significantly decrease by addition of 
Fe2O3. Sulfammox is applied in more specific 
environment where high ammonia and sulfate content 
which sulfate (SO4

2−) used as an electron acceptor 
under anaerobic conditions for ammonium removal. It 
was studied in various system such as suspended 
growth, biofilm, granular and hybrid reactors 
(Dominica et al., 2021).  

Table 3 shows different types of biological 
ammonia treatment technologies being applied in 
WWTP and WTP. It was found that researchers were 
focusing more on biological treatment compared to 

Table 3: Biological treatment of ammonia in DWTP and WWTP 
Application Technologies Percent removal, % Reference 

DWTP GAC-sand dual media filter 35.2% Feng et al., 2012 

DWTP Biological aerated filter (BAF) 75.3% Han et al., 2013 

DWTP Slow sand biofilter (BioSSF) 98.3% Hasan et al., 2019 

DWTP Sand biofilter 96–98% Subari et al., 2018 

GWTP Biofilter 90.82% Cheng et al., 2017 

Municipal Waste 
Treatment 

Ion exchange with various commercial 
minerals Ammonium ions: 55.7% Seruga et al., 2019 

Water purification 
system 

Bio-sand method & Sponge layer 
filtration method 

Bio-sand filtration: 76.342% 
Sponge layer filtration: 80.768% Homagai & Poudel, 2018 

WTP Duckweed 78 – 98% Hossain et al., 2016 

WTP Copolymerization air flotation-carbon 
sand filtration process Ammonia nitrogen: 27.5% Wang et al., 2018 

WTP Biofilter 
pH 6: 13% 
pH 7.5: 48% 
pH 9–10: >90% 

Hamidi et al., 2020 

WWTP Air stripping Semi-batch conditions (100%) 
Batch conditions (96.7%) Ozyonar et al., 2012 

WWTP Moving bed biofilm reactor (MBBR) >90% Shore et al., 2012 

WWTP 
Methane- and methanol-dependent 
bacterial consortium (methanotrophs 
and Methylophilus) 

58.9% Kim et al., 2020 

WWTP Air stripping 94.2% Ata et al., 2017 
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physicochemical treatment as biological treatment 
operates at low cost and involves less maintenance of 
the equipment. Furthermore, biological treatment has 
shown to be efficient in treating ammonia for both 
wastewater and drinking water. By referring to Table 
3, it can be observed that the removal efficiency of the 
biological treatment’s ranges from 35 – 98%. This 
shows that biological treatment is preferable in treating 
ammonia to produce good quality effluent. It is a fact 
that biological treatment can reduce the concentration 
of ammonia in both WTP and WWTP. However, 
WWTP focuses on using physicochemical methods to 
treat ammonia as shown in Table 3. In most cases, 
WWTP uses biosand filter for pathogens removal and 
to reduce the levels of COD and BOD in wastewater as 
reported by Mulugeta et al. (2020) and Primasari et al. 
(2020).  

Biological treatment mostly conducted in biosand 
filtration (BSF) in removing ammonia in order to 
supply clean drinking water for the community in 
WTP. Biosand filter (BSF) is an innovation biological 
treatment adapted from the traditional slow sand filter 
(SSF) used widely in developing countries to gain 
access to clean drinking water. It is modified in a way 
that the BSF is intermittently operated so that the user 
can control the amount of water filtered (Ahammed & 
Davra, 2011; Kennedy et al., 2012). A schmutzdecke 
layer is formed in order to provide effective filtration 
in treating raw water. It is usually embedded between 
the sand grains at the top of the filter. The 
schmutzdecke serves as a biofilm that assist in the 
removal of pathogens or contaminants in the raw water. 
Fig. 3 illustrates a schematic diagram of a BSF. 

Fig. 3: Cement biosand filter 

BSF is able to reduce turbidity, chemical oxygen 
demand, colour, suspended solids (Hasan et al., 2019), 
pathogens, and contaminants from dirty water (Hasan 
et al., 2019; Suprihatin et al., 2017). Many case studies 
have proven that the use of BSF in treating 
contaminated water managed to achieve maximum 
removal percentage of nitrate, nitrite, ammonium, 
manganese, ammonia-nitrogen, total suspended solids 
(TSS), organic matters, heavy metals, total organic 
carbon (TOC) and pathogens, where the quality of the 
treated effluent meet the WHO quality standards for 
drinking water and also with respect to each country’s 
water quality standards and regulations. In addition, the 
BSF showed high capability of improving turbidity of 
the treated water. Baraee et al. (2016) and Suprihatin et 
al. (2017), found out that the BSF and GAC-sand 
biofilter are capable in reducing the turbidity of the 
polluted water with removal efficiency between 40.3% 
to 89.36%.  

Some of the variables that have an influence 
towards the performance of the BSF are the hydraulic 
loading rate (HLR), hydraulic retention time (HRT), 
temperature, contaminant concentration, filtration rates 
and alkalinity. The rates of reactions in converting 
ammonia to NO2–N and NO3–N are influenced by the 
hydraulic flow characteristics of the filter. It was found 
that operating a GAC-sand biofilter under low HLR 
resulted in a more efficient performance (Baraee et al., 
2016). However, an increase in the HLR may cause a 
reduction in empty bed contact time (EBCT). EBCT 
plays an important role in providing a degree of contact 
between the filter media and the water flowing through 
the filter, allowing the organic particles to be adsorbed 
and removed from the filter. Further research was 
recommended in order to obtain the precise HLR and 
GAC media depth to increase the EBCT which can 
help in sustaining a longer operation of high-quality 
effluent production. Ammonium removal also 
correlates with hydraulic retention time (HRT). The 
HRT is the average time that a compound remains in a 
treatment tank or unit. The longer the retention time, 
the higher the removal efficiency of ammonium 
(Suprihatin et al., 2017).  

The biofilm layer is developed by the accumulation 
of microorganisms at the surface of the biofilter. It 
plays a major role in the biodegradation bacterial 
kinetics. The development of the biofilm layer is 
dependent on temperature and substrate. Ammonium 
removal rates is highly influenced by the formation of 
the biomass in the BSF, and the biofilm growth is 
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influenced by temperature. The bacteria that are 
attached on the biofilm are used for nitrogen removal 
as they would increase biomass retention time for 
reliable nitrification. It has been reported that the 
efficiency of nitrification process would decrease if the 
temperature of the influent is low (Saidu, 2009). 
Therefore, many case studies have reported in 
obtaining optimum temperature and pH for efficient 
ammonium removal, which is within the range of 15 to 
35 °C (Liu et al., 2020) and a pH of 7–9 (Sajuni et al., 
2010).  

Nitrification is the process of ammonia being 
oxidized to nitrite by ammonia oxidising bacteria 
(AOB) or ammonia oxidising archae (AOA) and 
subsequently convert nitrite to nitrate by nitrite 
oxidising bacteria (NOB) under aerobic conditions 
with the help of autotrophic bacteria. The main limiting 
factor for increasing the nitrification rate and also 
ammonia removal is the specific surface area of the 
biofilm (Lysakovskaa, 2015). Nitrosomonas, 
Nitrosococcus, Nitrosospira, Nitrosolobus, and 
Nitrosovibrio represent AOB that converts ammonia to 
nitrite, while Nitrobacter, Nitrococcus, Nitrospira, and 
Nitrospina represent NOB that further oxidise nitrite to 
nitrate. In most case studies, Nitrosomonas and 
Nitrobacter were found to be the dominant AOB and 
NOB (Jun & Wenfeng, 2009; Leyva-díaz et al., 2015). 
It is possible for further removal of nitrate to nitrogen 
gas through anaerobic processes as shown in Table 4. 
Table 4 depicts main bacterial reaction associated with 
a biological filter. 

Alkalinity also plays a role in influencing the 
nitrification process (Saidu, 2009). When ammonia is 
converted to nitrate, this reaction will consume 
alkalinity in the form of carbonate and bicarbonate. 
The carbonate and bicarbonate serve as a supplement 
for nitrifying bacteria. Theoretically, the greater the 
alkalinity of the influent, the higher the nitrification 
process. Nevertheless, it is necessary to set a minimum 
level of carbonate alkalinity to fulfill the requirement 
of ammonia-oxidiser’s inorganic carbon for cellular 
synthesis and growth (Biesterfeld et al., 2003). A study 
by Shanahan & Semmens (2015) reported that 
bicarbonate alkalinity had a strong influence towards 
the nitrification performance of a membrane aerated 
bioreactor (MABR) such that the nitrification 
performance increased from 65 to 77% as the 
concentration of bicarbonate increased from 0.6 to 
 4.8 mM. A trend of ammonia-nitrogen concentration 
being directly proportional to the level of alkalinity was 
observed by Campos et al. (2013). With that being said, 
concentration of ammonia-nitrogen will decrease if 
alkalinity is decreased. Since alkalinity encourages 
bacterial growth, therefore, both pH and alkalinity need 
to be balanced in order to promote optimal conditions 
for the bacteria to convert ammonia to nitrite. 

Continuous studies have been conducted to improve 
the performance of the BSF and the drinking water 
quality. One of them is by introducing iron oxide-
coated sand in the BSF. The iron oxide-coated sand is 
an innovation that is used to remove heavy metal ions 
from water. Introducing iron oxide-coated sand during 

Table 4: Main bacterial reaction associated with a biological filter 

Process Reaction 
Microorganism 

References 
Freshwater Marine 

Nitrification 
Ammonium 
oxidation 

NH4+ + 1.5O2 →NO2−+ 
2H+ + H2O 

Nitrosomonas 
oligotropha 

Nitrosomonas sp. Nitrosomonas 
cryotolerans  
Ntrosomonas europaea 
Nitrosomonas cinnybus/nitrosa 
Nitrosococcus mobilis 

Timmons & Ebeling, 
2010 

Nitrite oxidation NO2− + H2O → NO3− + 
2H+ + 2e- 

Nitrospira spp. 
Nitrospira 
marina 
Nitrospira 
moscoviensis 

Nitrospira marina Nitrospira 
moscoviensis 

Timmons & Ebeling, 
2010 

Denitrification 
Autotrophic 
(sulfide-
dependent) 

S2− + 1.6NO3− + 1.6H+ 
→ SO42− + 0.8N2(g) +
0.8H2O

Thiomicrosporia denitrificans 
Thiothrix disciformis Rhodobacter 
litoralis 
Hydrogenophaga sp. 

Timmons & Ebeling, 
2010 

Heterotrophic 5CH3COO−+ 8NO3− + 
3H+ → 10HCO3− + 4H2O 

Pseudomonas sp. 
Comamonas sp. 

Pseudomonas fluorescens 
Pseudomonas stutzeri Pseudomonas 
sp. Paracoccus denitrificans 

Timmons & Ebeling, 
2010 



F. Subari et al./ MJCET Vol. 5(1) (2022) 8–28 

17 

the maturation period and after cleaning operation 
resulted in a better performance of BSF (Ahammed & 
Davra, 2011). Constructed wetlands are artificial cost-
effective wastewater treatment system that have been 
designed and engineered to mimic and improve natural 
wetlands in treating municipal or industrial 
wastewater, greywater, or stormwater run-off. Polluted 
rivers can also be rehabilitated by constructed 
wetlands. Therefore, combining the two systems would 
be beneficial in improving water quality. As reported 
by Mtavangu et al., (2017), integrating constructed 
wetland with bio-sand filters resulted in higher 
feasibility for treating high turbid water for drinking. 
Lastly using brick chips layer in BSF. BSF with brick 
chips layer managed to remove ammonia more 
efficiently compared to BSF with charcoal layer (Kabir 
et al., 2020).  

4.0 Model prediction of ammonium removal in 
water treatment and wastewater treatment 
plant. 

Model prediction of biological process known to be 
tedious which requires a lot of collection of empirical 
data. However, in line with technological 
advancement, many studies were conducted with the 
use of computational aided software.  

The fundamental of dynamic models is that it plays 
a major part in process dynamics and control, in a way 
that it can be used to: 

• Improve understanding of the process
• Train plant operating personnel
• Develop a control strategy for the process
• Optimise process operating conditions

The key objective of a process control is to ensure 
that the key process-operating parameters are kept 
within the reference value or setpoint. Process 
modelling enables a deeper understanding of the tests 
and outcomes, setting a strong start to the optimisation 
process, and making it possible and easier to visualise 
where the bottlenecks are and what are the 
inefficiencies. 

Artificial neural network (ANN) has been applied 
in the water technology field to predict water quality, 
average level of contaminants in river and performance 
of filters used in the treatment plant. ANN is an 
artificial intelligence designed to carry out similar 
function of the human brain to analyse, processes 
information and making decisions in a humanlike 
manner. It consists of basic computing elements that 

interconnect to one another, in which it replicates the 
way neurons behave. The ANN relates both input and 
output variables. ANN is widely used for nonlinear 
systems for complex processes because the model 
could express nonlinear and complicated patterns and 
problems with the developed algorithms. As stated by 
Fan et al. (2016), their wide range of applicability and 
ability to solve complex and nonlinear relationships 
between the variables without underlying mechanism 
had made them became widely known in the 
engineering sector. 

ANN is a predictive model that replicates how the 
human brain works. It has the ability to self-learn and 
is not restricted to the input variables provided to them. 
These network models are capable in adapting to any 
situations just by learning from an example of a system 
or from historical data. Khataee & Kasiri (2011) 
stressed that the ANN modeling does not require any 
additional information regarding on the mechanism 
and kinetics of biodegradation of treated contaminants 
for biological water and wastewater treatment 
processes. Many researchers have highlighted how the 
simulation of artificial neural network in process 
control system has been proven to be quite beneficial 
in predicting the performance of WTPs and WWTPS 
accurately. Since WTPs and WWTPs kept data from 
many years back, these data were used as an input for 
the ANN model to simulate predictions of the desired 
parameters. Most of the predicted data was almost 
similar to the experimental values (Kundu et al., 2014; 
Pakrou et al., 2015; Tümer & Edebali, 2015).  Not only 
that, but it is also able to predict effluent violations, the 
behaviour of a system, water production variations, 
removal efficiency, and water quality of the effluent of 
the WTPs and WWTPs, and rivers. 

ANN is capable in detecting the limit violations of 
the effluent in ammonia removal studies. Since 
ammonia has been one of the major pollutants in rivers, 
producing effluent with concentration that is within 
standard regulations is crucial for WTPs and WWTPs. 
Hence, the implementation of ANN in both treatment 
plants is used to predict the effluent pollutants 
concentration. Huang et al. (2017) used near-infrared 
spectroscopy with back-propagation neural network in 
predicting the concentrations of total nitrogen, 
ammonia nitrogen, and nitrite nitrogen, which then 
allows monitoring polluted rivers more convenient. 
ANN is also used in determining key parameters that 
have big influence towards the calculation of 
approximation algorithm. Ofman & Sokolowska(2019) 
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developed a neural network model that allowed 
accurate representation of changes in trend of 
individual forms of nitrogen in both anaerobic and 
aerobic phases inside a granular sludge batch reactor 
(GSBR). It seems like the ANN model was able to 
show which parameter has the greatest influence on 
calculation accuracy and is responsible for selected 
pollutant removal. It is worth noting that using larger 
number of variables increase the difficulty in 
identifying the key variables that have significant 
impact on changes during wastewater treatment. 

Neural network is comprised of three layers; input, 
hidden and output. Fig. 4 illustrates the structure of an 
artificial neural network (ANN). The key component 
of the ANN to perform better as a predictive model 
would be the hidden layer. The hidden layer has 
complex functions that create predictors. Generally, 
many researchers claimed that using more than one 
hidden layer in a multi-layer feed-forward network is 
unnecessary. Instead, changing the number of hidden 
nodes in one hidden layer is enough in producing 
different results (El-Din & Smith, 2002). By following 
the rule-of-thumb, calculating the correct number of 
neurons to be used in a hidden layer can be achieved as 
follows (Ganatra & Panchal, 2011): 

• The size of hidden neurons should be between the
size of input layer and output layer.

• The number of hidden neurons is 2/3 (or 70% –
90%) of the size of the input layer. If it is
insufficient, number of output layer neurons can
be added later on.

• The number of hidden neurons should be less than
twice the number of neurons in input layer.

Increasing the number of hidden layers can make 
the neural network to solve more complex problems. 
Karsoliya (2012) reported that one or two hidden layers 
are sufficient in solving non-linear complex problem. 
However, it will affect the duration of the neural 
network to produce the output. Nevertheless, neural 
network model with two hidden layers performed 
better when handling complex data sets compared to 
neural network model with one hidden layer (Qiu et al. 
(2016). The ANN model with minimum errors is often 
chosen as the best model. Güçlü & Dursun (2010) had 
changed the number of neurons in the hidden layer 
between 3 and 100. It was found that the best suited 
model of ANN for COD, SS, and MLSS was 8:20:1, 
8:23:1 and 8:14:1 respectively which corresponds to 
the node number of inputs, hidden and output layers. 

This proves that the ANN with the highest number of 
hidden neurons will not guarantee as the best model. In 
order to determine whether the constructed ANN 
model performed efficiently, the model is evaluated 
using statistical techniques, which are the mean 
squared errors (MSE), and correlation coefficient (R2). 
ANN structure with the highest correlation coefficient 
and lowest mean squared error is chosen as the best 
performing model. 

In addition, increasing the number of hidden nodes 
in the hidden layer will also affect the network in terms 
of memorizing the training data sets instead of focusing 
on the important features (El-Din & Smith, 2002). 
Based on previous research, it is recommended that 
both number of hidden layers and number of neurons 
in each of the hidden layers should be taken into 
consideration. Table 5 compiled the model prediction 
using ANN by various researchers. 

5.0 Control strategy of ammonia removal in 
wastewater treatment and water treatment 
plant. 

Many studies have been conducted on designing a 
control system that is suitable for WTPs and WWTPs. 
The use of a conventional PID controller is very 
common in industrial feedback control loops due to its 
robust performance in a wide range of operating 
conditions. The controller is mainly used in the 
chemical industry to regulate temperature, flow, 
pressure, speed, and other process variables. However, 

Fig. 4: Structure of artificial neural network layers 
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the simplicity of the traditional PID controller makes it 
less reliable when dealing with complex system. Two 
of the popular tuning methods are Ziegler Nichols (ZN) 
and Cohen-Coon (CC). Both methods have been 
proven to be simple and easy in tuning PID gains. In 
addition, the ZN tuning method is best for step test and 
load disturbance test, whereas CC tuning method only 
performs better at set point change. The nature of 
ammonia removal is non-linear. Nevertheless, 
researchers have found it to be deficient in nonlinear 
systems (Azman et al., 2017). Table 6 shows a 
comparison of results obtained from previous case 
studies on the optimisation of a PID controller. 

A conventional PID controller is often enhanced 
with other tuning methods or algorithms to develop the 
best control system in the water technology fields. A 
hybrid duo of conventional and advanced control 
system has improved in many ways resulting improved 
and better control strategy. Honga et al. (2012) found 
that the standard deviation of an output chlorine rate 
using artificial neuro-fuzzy inference system combined 
with PID controller system was 3.6 and 7 times less 

than the traditional PID controller system. Sabri & Al-
Mshat (2015) compared the control performance of 
water level in a tank using conventional PID controller 
and a fuzzy logic controller (FLC). It was observed that 
the FLC showed better enhancement of control strategy 
in terms of no overshoot, faster settling time, better set 
point tracking and produced lower integral of time and 
absolute error (ITAE), integral of time and squared 
error (ITSE), integral absolute error (IAE), and integral 
squared error (ISE). Based on Table 6, it shows that 
optimisation of a basic PID controller with another 
control strategy can improve the step response.  

In recent years, many researchers have 
implemented a meta-heuristic optimisation technology 
in the control system of water and wastewater 
treatment. Some of the popular meta-heuristic 
optimisation technologies are the gravitational search 
algorithm (GSA), particle swarm optimisation (PSO), 
and grey wolf optimisation (GWO). PSO-PID 
controller was stated to show better performance over 
traditional PID controller in terms of improved step 
response such as reduced steady state error, fast rise 

Table 5: Model Prediction using ANN 
Model Findings References 

Elementary artificial neural network 
with multiple linear regression (MLR) 

Both models produced accurate model however some ANN 
models resulted in larger deviation between model and 
validation data.  

Kok et al. (2019) 

Artificial neural network (ANN) 
ANN could simulate the trend of ammonium and phosphate in 
steady streams however incapable in extreme events due to 
complexity of the transport of those chemicals. 

Sedaghatdoost (2020) 

Multilayer perceptron (MLP) artificial 
neural network (ANN) and Response 
surface methodology (RSM) 

MLP-based prediction tool produces better predictions than 
RSM with better scatter plot of actual and predictions value, 
and highest regression coefficient (closed to 1). 

Temel et al. (2021) 

Feed forward back -propagation ANN. 

The performance of batch reactor for the treatment of 
slaughterhouse wastewater were modelled using ANN and the 
performance were evaluated based on mean square error 
function and regression analysis. Both analyses show great 
accuracy.  

Kundu et al. (2014) 

Artificial neural network (ANN) 
ANN used for optimization of nitrogen elimination from 
wastewater using annamox bacteria in fixed-bed reactor. 
Better R2 and MSE value resulted in the study. 

Mojiri et al. (2020) 

Artificial neural network (ANN) Developed neural network model showed better R2 with 
maximum removal in municipal wastewater treatment plant. Pakrou et al. (2015) 

Artificial neural network (ANN) 
The model developed in this work has satisfactory result and 
accuracy. The neural network modeling effectively predicts 
the performance of wastewater treatment plant.  

Tümer & Edebali (2015) 

Artificial neural network (ANN) with 
multilayer perceptron (MLP), learned 
using the Broyden-Fletcher-Goldfarb-
Shanno algorithm. 

Developed ANN models indicated variables the most 
influencing of particular nitrogen forms in aerobic and 
anaerobic phase of GSBR reactor. ANN models can be used 
in further studies on modeling of nitrogen forms in anaerobic 
and aerobic phase of GSBR reactors.  

Ofman & Sokolowska 
(2019) 

Artificial neural network (ANN) 

The results indicate that the proposed soft sensor based on a 
deep-structure neural network in wastewater treatment plant 
can achieve better prediction and generalization performance 
in comparison with commonly used methodologies. 

Qiu et al. (2016) 
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time and quick settling time in the application of level 
control in conical tank-based wastewater treatment 
plant (Mercy & Girirajkumar, 2017). In another 
development, it has been observed that the GSA-PID 
controller showed better results in terms of transient 
response by 20% - 30% compared to PSO-PID 
controller. Recently, in 2018, it found that, the GWO 
based controller showed better efficiency and 
suitability over other algorithms such as the artificial 
bee colony (ABC) algorithm, differential evolution 
(DE) algorithm, and PSO algorithm in tuning the 
controller parameters in a RO water treatment plant 
(Rathore et al. 2018). 

The advanced process control that is often used in 
the WTP and WWTP is the model predictive control 
(MPC). MPC is an advanced control method that has 
been widely used in industrial control applications, 
where its algorithm is based on a predictive model of 
the process. The model is applied in most industrial 
applications for its ability in predicting future control 
actions and control trajectories (Kumar & Anwar, 
2012). MPC requires a mathematical model of a 
process, whether the mathematical models being linear 
models, reduced nonlinear models or neural networks 
to obtain the control signal by minimizing an objective 
function. Reduced nonlinear models seem to provide 

Table 6: Control strategy in water and wastewater treatment plant 
Control strategy Manipulated variables Result Reference 

PID-MPC Temperature No overshoot Rajasekaran & Kannadasan (2013) 

GSA-PID 
Substrate and DO 
concentration 

Rise time, 0.51s 
Settling time, 4.91s 
Overshoot, 2.10% 

Aziz et al. (2015) 

PSO-PID 
Rise time, 0.76s 
Settling time, 5.78s 
Overshoot, 7.29% 

PSO-PID 

Level 

Delay time, 18.34 s 
Rise time, 29.76 s 
Settling time, 81.54 s 
ITAE, 0.0134 
IAE, 178.76 
MSE, 1.235 
ISE, 146.87 Mercy & Girirajkumar (2017) 

Astrom and Hagglund 

Delay time, 16.23 s 
Rise time, 24.56 s 
Settling time, 84.45 s 
ITAE, 32.46 
IAE, 143.83 
MSE, 78.12 
ISE, 124.53 

PID 

Level 

Overshoot, 11.2% 
Settling time, 250 s 
Rise time, 34 s Sabri & AL-Mshat (2015) 

Fuzzy 
No overshoot 
Settling time, 105 s 
Rise time, 29 s 

GWO-PID 

Permeate flux and 
conductivity 

1. Flux loop
Rise time: 0.4079 s
Settling time: 0.5410 s
Overshoot: 0.0247%

2. Conductivity loop
Rise time: 1.0716 s
Settling time: 2.4746 s
Overshoot: 0% Rathore et al. (2018) 

PSO-PID 

1. Flux loop
Rise time, 0.1953 s
Settling time, 0.6696 s
Overshoot, 3.0501%

2. Conductivity loop
Rise time, 1.3302 s
Settling time, 11.1810 s
Overshoot, 18.3052%
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better prediction capability than a linear model. 
MPC has been proven to show satisfactory tracking 

and disturbance rejection performance of a WTP and 
WWTP in terms of ammonia removal, reduction in 
ammonia and nitrate concentrations in the effluent, 
improve effluent quality and reduce energy, as well as 
operation consumption costs. In most previous studies, 
many supported that MPC system is superior to 
conventional PID controller. However, Vrečko et al. 
(2011) debated that ammonia feedforward-PI 
controller displayed better results compared to 
ammonia MPC. Nevertheless, Kumar & Anwar (2012) 
concluded that neural-based controller can achieve 
tighter regulatory control compared to single-loop 
controllers that use multivariable feedforward-
feedback model predictive control.  

Based on recent studies, it seems that the solution to 
overcome the weakness of the PID controller is by 
optimising it with other control algorithm in order to 
gain ideal control of the nonlinearity of ammonia 
removal in water treatment facilities. Nevertheless, 
MPC has also shown great capability in handling 
complicated, nonlinear control processes in regulating 
ammonia concentration of the effluent.  

6.0 Conclusions 

Rapid urbanisation and industrialisation are the 
roots cause of ammonia pollution where ubiquitous 
toxic substances polluted main source of raw water 
supplied. Biological treatment offers better alternative 
of conventional physical chemical treatment of 
ammonium removal. It is showed by many developed 
countries has applied the technology in their water 
treatment facility. Biological treatment adopted simple 
mechanism and environmentally friendly solution to 
treat ammonia. It is capable in removing ammonia and 
produce high quality water within the standard limit 

when optimum operating conditions are met. As 
technologies have evolved, tuning the water 
parameters such as pH and turbidity level on a 
monitoring device is very convenient as it allows us to 
place a setpoint according to required range. 
Furthermore, to be able to predict the outcomes of the 
biological treatment would bring much advantage 
where overall performance could be predicted as well 
as detecting effluent violations. Artificial neural 
network (ANN) is a promising computing system that 
is able to enhance the overall performance of WTP and 
WWTP. A conventional PID controller alone is not 
suffice in tuning the parameters or obtain the ideal 
control effect in a WTP and WWTP due to their 
nonlinear dynamic behaviour, time varying parameter 
values, limitation on the manipulated variables, 
correlation between the manipulated and the controlled 
variables, unconsidered and frequent disturbances, 
delay on input and measurements. A mathematical 
relationship between the input and output of the system 
should be known to formulate the controller. The 
efficiency of a PID controller improved tremendously 
when hybridisation implied with certain tuning 
methods such as Ziegler-Nichols (ZN) or Cohen-Coon 
(CC), fuzzy control system, or with a metaheuristic 
method such as the particle swarm optimisation (PSO), 
gravitational search algorithm (GSA) and grey wolf 
optimisation (GWO). For future prospects, further 
study on both ammonia treatment methods together 
with process control systems in overcoming river 
pollution that has been a major crisis all over the world. 
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