UNIVERSITI TEKNOLOGI MARA

NBTI EFFECTS ON THE PERFORMANCE OF SET AND DET D FLIP-FLOP TOPOLOGIES BY USING MOSRA AND PREDICTIVE TECHNOLOGY MODELS

MUHAMMAD FITRI BIN ZAINUDIN

MSc

March 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhammad Fitri bin Zainudin
Student I.D. No.	:	2015315789
Programme	:	Master of Science in Electrical Engineering – EE750
Faculty	:	Electrical Engineering
Thesis Title	:	NBTI Effects on The Performance of SET and DET D Flip-Flop Topologies by Using MOSRA and Predictive Technology Models
Signature of Student	:	Ita
Date	:	March 2020

ABSTRACT

Negative Bias Temperature Instability (NBTI) is an aging mechanism that has become a key reliability issue in MOSFETs technology as well as FinFETs technology. The main reliability issues regarding the NBTI mechanism are that NBTI not only degrades the transistor electrical properties but also degrades the device performance as well as shortens the device operation lifetime over time. Therefore, the main objective of this study is to investigate the effect of the NBTI mechanism on the performance of the flip-flop circuits based on Single-Edge Triggered Flip-Flop (SETFF) and Double-Edge Triggered Flip-Flop (DETFF). In this work, the flip-flop circuits are simulated with different stress conditions and process variations by using HSPICE with MOSFET Reliability Analysis (MOSRA) and Predictive Technology Model (PTM) from 32nm to 16nm. The results suggested that the flip-flop circuits based on FinFET technology and MOSRA-based interface trap model (at VDD=0.85V and T=125°C) can increase the delay time by 0.026% to 4.27% while the power consumption decreases by 21.67% to 26.34%. Under the same stress conditions, the findings have shown that the performance of DETFFs has higher degradation compare to SETFFs which results in 4.27% increase in delay time and 26.34% reduction in power consumption.

ACKNOWLEGMENT

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for giving me the strength and patience in completing this thesis. I am also indebted to my main supervisor, Dr. Hanim binti Hussin for accepting me as her postgraduate student and constant support throughout the master's research. I would like to express my gratitude to my co-supervisor, Dr. Jamilah binti Karim as well as Abdul Karimi bin Halim for their time, guidance, and kindly assistance. Their invaluable help of useful comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

Furthermore, I am grateful to the technicians in Microelectronic Lab, Faculty of Electrical Engineering for giving permission and providing services and laboratory facilities. Not to forget, Universiti Sains Malaysia (USM) for providing their services and assistances in using their rental software, Synopsys. Thanks to dedicated and very committed laboratory staffs, and postgraduate seniors for giving motivation and helpful discussion. This research could not be successfully completed without their kindness and cooperation.

Finally, I wish to express my sincere thanks to my parents, Zainudin bin Jaafar and Sarizah binti Mohamed Nor, siblings, and friends for their moral support and encouragement upon completing this research. Lastly, I am also placing on record, my sense of gratitude to one and all, who directly or indirectly, have lent their hand in this venture.

TABLE OF CONTENT

CON	CONFIRMATION BY PANEL OF EXAMINERS						
AUT	HOR'S DECLARATIO	N	iii				
ABSTRACT			iv				
ACKNOWLEGMENT			v				
ТАВ	LE OF CONTENT		vi				
LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS			ix xii xvi xviii				
				LIST OF NOMENCLATURE			XX
				CHAPTER ONE INTRODUCTION			21
1.1	Research Background		21				
1.2	Motivation	23					
1.3	Problem Statement		24				
1.4	Objectives		27				
1.5	Scope of Study	28					
1.6	Thesis Outline		29				
СНА	PTER TWO LITERAT	URE REVIEW	32				
2.1	Introduction		32				
2.2	Negative Bias Tempera	ture Instability (NBTI)	32				
	2.2.1 NBTI Models		33				
	2.2.2 NBTI Experime	ental Methods	40				
	2.2.3 NBTI Paramete	r Extraction	43				
2.3	MOSFET Model Relia	pility Analysis (MOSRA)	44				
	2.3.1 MOSRA NBTI	Model	45				
2.4	Predictive Technology Model (PTM) for Sub-45 nm Design 4						
2.5	The Implication of NB	I on the Performance of the Flip-flop	47				