ZARINAET AL.

A Framework for Design of Automated Lecture Timetabling
using Memetic Algorithm

Zarina Zainul Rashid
Roslan Sadjirin
Norhafizah Hashim

ABSTRACT

Lecture timetabling is a complex real-world problem with many interdependencies. This study
describes the framework design of an automated lecture timetabling in educational institutions
using soft computing techniques. In this paper, the writerspresent the use of memetic algorithm
in the framework design with affective explorative ability to model huge search space. The
writers analyse the process, problem and the constraints in timetabling development and study
the disciplines that relate to memetic algorithm approach. These requirement specifications are
used to design the data structure and the algorithms to produce system architecture for a
framework of the automated timetabling system.

Keywords: framework design, automated lecture timetabling, soft computing, memetic
algorithm

Introduction

Lecture timetabling refers to the allocation of lecture sessions and lab sessions to time slot and to
classroom. Lecture timetabling problem occurs in many educational institutions. This problem is
a complex real-world problem with many interdependencies. Wren (as cited in Chand, 2002)
defines timetabling as ‘the allocation, subject to constraint of given resources to objects being
placed in space time, in such a way to satisfy as nearly as possible as set of desirable objectives’.
The size and complexity of lecture timetabling problems has encouraged research in soft
computing techniques. Studies have shown that metaheuristic approach for the lecture
timetabling can give encouraging results. Memetic Algorithm (MA) is a metaheuristic approach
that combines Genetic Algorithm (GA) and Local Search heuristic to produce required solution
for a particular optimatisation problem. This hybrid technique has a great potential to be an
efficient algorithm to automate the development of timetables or schedules. Therefore, this paper
presents the framework design for the automated timetabling system using memetic algorithm.

Timetabling

The task in timetabling is to accommodate a set of entities, for example, classroom, lecturer and
student-group into a time slot so that the available resources are utilised in the best possible way
and the existing constraints are satisfied. The problem of searching for solutions in timetabling is
subjected to the constraints. These constraints will give a fitness evaluation to the data.
According to the Burke & Petrovic (2002), these constraints can be divided into two categories,
namely hard constraints and soft constraints.

295

ZARINA ET AL.

Hard constraints

Hard constraints are rigidly enforced. Deris et al. (1999) provide several examples of such
constraints:

a. Courses taught by the same lecturer should not be assigned to the same timeslot:

T(C)#T(C)ifL (C) =L (C).
where T (C;) and T (C)) are timeslot for courses
CiandC;,i,j=1,2,3,4....,n
L (C) and L (C)) are lecturers.

Timeslot for courses C;, T (C,) must not be the same as the timeslots for courses T (C))
if the lecturers are the same.

b. Courses from the same student-group should not be assigned to the same timeslot:

T (C) # T (C) if SG (C;) = SG (C).
where T (C;) and T (C)) are timeslot for courses
Ciand Cy, i,7=1;2,3,4....;n
SG (C)) and SG (C)) are student group.

Timeslot for courses C;, T (C;) must not be the same as the timeslots for courses T (C))
if the student groups are the same.

c. One classroom should no be assigned to more than one course for the same timeslot:

T (C) # T (Cpif CL (C;) = CL (C)).
where T (C;) and T (C,) are timeslot for courses
CiandC;,i,j=1,2,3,4....,n
CL (C)) and CL (C)) is classroom or lab.

Timeslot for courses C;, T (C;) must not be the same as the timeslots for courses T (C))
if the classroom or labs are the same.

d. Some timeslot are not available for lectures because they are reserved for specific
activities such as co-curriculum.

Soft constraints

Soft constraints are those are desirable but not absolutely essential (Burke & Petrovic, 2002).
Examples of soft constraints are:

a. The number of students of a course assigned to a classroom should be less than or equal
to the capacity of the classroom. Classroom capacity constraints are represented as:

Z(CL(C))=N(C)

296

ZARINAET AL.

where Z(CL(C))) is the capacity of the classroom allocated to course C; i = 1,2,34......
p. N(C)) is the number of students of the course C;

b. A lecturer who holds a position in the management group may prefer to have all their
lectures on a certain number of days and to have a number of lecture-free days.

c. A lecturer may prefer to conduct a lecture in a particular classroom or lab.

Memetic Algorithms

Memetic Algorithm (MA) is a metaheuristics technique that combines Genetic Algorithm (GA)
and Local Search technique. According to Burke and Petrovic (2002), the main idea of the MA is
to explore the neighbourhood of the solution obtained by a GA and to navigate the search toward
the local optima, which is Local Search heuristic, for each solution before passing back to the
GA and continuing the process. The purpose of using GA and Local Search heuristic is simply
because of their characteristics. GA can deal successfully with a wide range of problems area and
can produce many solutions to the particular problem. Meanwhile, Local Search heuristic is best
at finding the best solution in its neighbourhood and only performed if the resulting solution is
better than the current solution (Blum & Roli, 2003), and will only terminate when it produces
the best solution. Thus, the combination of these techniques might produce an optimal solution in
a short time.

Furthermore, according to Burke & Silva (2005), the use of Local Search heuristic in MA
serves as an effective intensification mechanis that is very useful when using sophisticated
representations schemes and time consuming fitness evaluation functions. They also argue that
by studying the problem domain in detail, there is always a way or alternative to create a new
technique in MA approach. They also state that MA is a good approach in solving timetabling
problems as follows:

1. MA approaches have a good explorative ability in huge size of search space.

2. MA incorporates specialised encodings and operators for self improvement of solutions
which are based on the knowledge of the problem domain.

3. MA is more robust in population of new solutions compare with the single solution methods.
It can reduce the effect of the error in the fitness estimation that will improve the time
consuming.

MA was used by Boughaci, Benhamou & Drias (2009) in the optimal winner determination
problem. The objective is to achieve a good compromise between the intensification and
diversification and the search process.

Since MA is a strategy used by many successful global optimisation approaches, the
researchers feel that a priority should be given to MA technique. The writers studied the problem
domain and propose a new approach to develop a framework design on the automated lecture
timetabling.

ZARINAET AL.

Framework Architecture for Automated Lecture Timetabling

The combination of Genetic Algorithm (GA) and Local Search heuristic is appropriate because
the searching for reasonable good solution would be much effective since the mechanism is
based on the existing constraints and guarantees terminated whenever the possible and
reasonable good solution were obtained. GA techniques will be used to implement the
development of automated timetabling system as follows:

Generate

Data (chromosomes) are evaluated randomly upon the existing constraint and objective of the
problem. Next, the best matches of data (chromosome) are searched using Local Search
technique. Data that are successfully matched will be inserted into table ‘Lecturer Timetable’,
‘Student Group Timetable’, and ‘Classroom Timetable’. While data that are failed to be matched
with those constraints will be inserted into temporary table called ‘Non-Matches Data’.

-

Crossover

Data from tables ‘Lecturer Timetable’, ‘Student Group Timetable’ and ‘Classroom Timetable’ as
well as ‘Non-Matches Data’ are matched in order to improve the failure rate of data that are
failed to be matched. This matching process will be done using Local Search techniques.

Mutation

Any modification to the timetable will cause mutation process to happen. At this stage, two
levels of operator are used to decrease the modification to these timetables. The first level is used
to modify one timetable only and followed by second level that combines the timetables which
have been modified by first level of operator with those non-matches data. These two levels of
operation will go through the matching process using Local Search techniques.

Mechanisms to reach the possible optimal solution for all phases will use Local Search
techniques. Figure 1 illustrates a framework for Memetic Algorithm technique.

Genetic Algorithm technique

Generate

Fitness
Evaluation Local Search
< technique
Selection
|
[1

Crossover Mutation

Figure 1. A framework of Memetic Algorithm (MA)

298

ZARINAET AL.

Architecture Design

There are three components involved in the architecture design as shown in Figure 2. The first
component is the timetable interface that allows the users to interact with the system. The
second component is a data maintenance that manages and stores data in the database. The third
component is the timetable generator which generates timetables by using Memetic Algorithm
technique.

Timetable interface ‘____&rcport/)__.____]

generate @ mura@
3 g

mnsert: update;
delete data Timetable Generator

Data Maintenance

Memetic Algorithm

Dﬂtabast

Figure 2. Architecture design of the system

Software Hierarchy Design

This system is divided into three modules which are data maintenance module, generator module
and report module as shown in Figure 3. Data maintenance module handles operations on data of
lecturers, courses and student groups. Generator module is the main part of the system which
uses the MA technique in the generator, crossover and mutation modules. While, Report Module
is used to generate report for the ‘generated timetables’ from the system.

Architecture of Flow Process

The architecture of flow process is focused into three main operations. These three operators are
Generate operator, Crossover operator and Mutation operator.

Generate Operator

Population is generated during the Generate operation. Parents are selected from the individuals
that are chosen at sequence. The individuals are selected according to the fitness evaluation of
the chromosomes to become a parent. The basic local search using the matching algorithm is
applied. The flow process Generate operator is shown below in Figure 4.

299

ZARINAET AL.

TIMETABLING SYSTEM
I 1 1
Data Timetabling Timetable
Maiatenance Generator Report

|

Class
o

Student Course
group

|

l GenemteJ | Crossover

| |

r
L Lab ll Lecture H Mass Lecture |

Classroor

‘Lab

Figure 3: Software Hisrarchy Desizn

=
Course Mass Lecture Lab
: : Student
Extract course information | group
a4 L
Lectmre |, Tdentify the constraint ¢
4L Lecturer
Determine time slot and day ¢ Timetable
Student
L Store the informati
Timetable Clash? e on
No
A= - Extract classroom information
o
Determine time slot and day Non-mathces
[o . Data
Classroom ¢ =
Timetable o ~
Store the information

300

Figure 4. Flow process of generate operation

ZARINAETAL.

Crossover Operator

The two selected parents from the population are recombined. The basic local search is used
similarly as the Generate operator. The Crossover operator (Figure 5) will reduce the information
in the Non-matches Data table.

I
Delete the information -—@-mhsnm '

Figure 5. Flow Process of crossover operation

301

ZARINAET AL,

Mutation Operator

In mutation, information of a particular timeslot is replaced with selected information from Non-
matches Data. The Mutation operator is restricted to two different levels. In the first level,
operator will swap the selected time slot with the free time slot. The second level shows that
information from Non-matches Data will be stored into the selected timeslot. The flow process
Mutation operation is illustrated in Figures 6 and 7.

Mon-matches Data i
; : Timetakle
Exmact information from
Won-mathes Data o
T

v Ideptify the constraint
. Search and compare the free
slot for tme and day ,

[IND
Replace the time slot and day
1L

Extract information
ol ke
Determine time siot and day

Classroom

Classronm
Timetable ¥,

Clash? ‘5—:)
T No
Replace Information

X > Level 2

Figure 6. Flow process of mutation operation - Level 1

302

ZARINAETAL.

—d L ‘
Dalete Information *-‘@n—mmrhes Dana I

Figure 7. Flow process of mutation operation - Level 2

Database Design

There are eleven tables involved in this framework design. Figure 8 illusrates the ER diagram for
the data structure of the framework design. Seven tables contain the data (chromosomes) that can
be used as a fitness evaluation. Meanwhile, the other four tables store the selection that had been
made during the Generate operator. These four tables are also recombined by using a Crossover
operator.

303

ZARINAETAL.

Lacmrar

P
: < used Tinemble
___e\\\vr //,_

N

N
| classzoom

1

{;«:‘\ M Srudsrt greup M
S Tiwetable

L >
.

M

i .
Classroom
Timetable

Figure 8. E-R diagram

Conclusion

Memetic Algorithm (MA) is metaheuristic method that applies synergy of evolutionary based
approach to search for possible optimal or at least reasonable good solution for a given
computational problem. Genetic Algorithm (GA) and Local Search heuristic have their own
strength to solve the computational problem. GA is one of the main components of soft
computing which is categorised as a global search technique that can find possible optimised
solution for a searching problem. On the other hand, Local Search heuristic has an effective
intensification mechanism that can search feasible solution quickly within its reachable and
available solutions. Furthermore, the properties of this technique can promote the memory space
and processing time efficiency because searching process for reasonable solution can be found
quickly.

Therefore, by using the combination of GA and Local Search heuristic, the writers propose a
‘Framework for Design of Automated Lecture Timetabling Using Memetic Algorithm (MA) for
Academic Institution’. The design is an improved version of the MA that suits the problem
domain. The innovation in this solution is that, MA technique can be used in the optimisation of
the timetabling process. Future work will include the development of the system of automated
lecture timetabling and study about the exploritive of search ability.

304

ZARINAET AL.

References

Chand, A. (2002). A Heuristic Approach to Constraint Optimazation in Timetabling. South
Pacific Journal National Scientific. Vol. 20, 64-67.

Blum, C. & Roli, A. (2003). Metaheuristics In Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys (CSUR). Vol. 35(3), 268-308.

Boughaci, D., Benhamou, B. & Drias, D. (2009). A Memetic algorithm for the optimal winner
determination problem. Soft Computing - A Fusion of Foundations, Methodologies and
Applications. Vol. 13(8, 9), 905-917.

Burke, E.K. & Petrovic, S. (2002). Recent research directions in automated timetabling.
Europian Journal of Operation Research. Vol. 140(2), 266-280.

Burke, EK. & Silva, J.D., (2005). The design of memetic algorithm for scheduling and
timetabling problems. Recent Advances in Memetic Algorithm. Springer. Vol. 166: 289-311.

Deris, S., Omatu, S., Ohta, H. & Saad, P. (1999). Incorporating Constraint propagation in
Genetic Algorithm for University Timetabling Planning. Engineering Applications of Artificial
Intelligent. Vol. 12 (3): 241-253.

ZARINA ZAINUL RASHID, ROSLAN SADIJIRIN & NORHAFIZAH HASHIM, Fakulti Sains
Komputer dan Matematik UiTM Pahang, Universiti Teknologi MARA Malaysia.
zzr@pahang.uitm.edu.my, roslan81@pahang.uitm.edu.my, fiza_hz@pahang.uitm.edu.my

305

