Universiti Teknologi MARA

Image Classification of Aedes Mosquitoes Using Transfer Learning

Zetty Ilham Binti Abdullah

Thesis submitted in fulfillment of the requirements for Bachelor of Computer Science (Hons.) Faculty of Computer and Mathematical Sciences

July 2021

ACKNOWLEDGMENT

All praises to Allah and His Blessings for the completion of this project successfully. I would like to thank everyone who has contributed and participated whether directly or indirectly to the successful completion of this final year project.

First of all, I would like to express my sincerest gratitude to my final year project supervisor, Dr. Pradeep Isawasan, for his guidance, support, understanding, patience and most importantly, the knowledge and positive encouragement throughout the process of completing this Final Year Project. It was a great privilege and honour to work and study under his supervision.

My special thanks goes to all my family members, friends and other lecturers. It would have not been possible to complete this project without the endless support from them. I was blessed with various kinds of supports including mentally, financially and academically.

ABSTRACT

The first and most important step in controlling the deadly air-borne diseases like dengue, chikungunya, Zika, and yellow fever is to track the spread of disease-carrying mosquitos. In recent years, the importance, and uses of computer vision, notably image classification, to tackle real-world issues have grown. With roughly 3,500 distinct species of mosquitoes on the planet today, classification is a time-consuming and difficult operation. The advancement and rapid growth of machine learning field should not overlook this issue. Transfer learning concept in machine learning has been shown to improve learning of the targeted task by extending the original algorithm with knowledge gathered from the initial training to improve the performance of new model. This project's model framework utilizes the concept of transfer learning by using pretrained models to classify images of Aedes Mosquitoes according to its species. The architecture is also evaluated based on the performance produced by experiments conducted using different combination of hyperparameters. In all combinations of the hyperparameters employed in the experiment, the use of the pretrained model MobileNetV2 for transfer learning surpasses the use of the pretrained model VGG16. The experimental results demonstrate the success of the model architecture to meet initial objectives of the project and be beneficial for future health workers, entomologists and potentially non-experts.

TABLE OF CONTENTS

CONTENT

SUPERVISOR'S APPROVAL	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	Х
LIST OF ABBREVIATIONS	xi

CHAPTER 1: INTRODUCTION

1.1 Introduction	1
1.2 Background of Study	2
1.3 Problem Statement	3
1.4 Research Questions	4
1.5 Research Objectives	4
1.6 Scope of the Research	5
1.7 Significance of Study	5
1.8 Conclusion	6

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction	7
2.2 Aedes Mosquitoes & Diseases	8
2.2.1 Aedes albopictus vs Aedes aegypti	9
2.3 Image Processing	12
2.4 Image Classification & Techniques	12
2.4.1 Support Vector Machine (SVM)	13
2.4.2 Convolutional Neural Network (CNN)	14
2.5 Transfer Learning	14
2.6 Comparisons of Related Works	15
2.7 Chosen techniques & features	16
2.8 Summary	17

CHAPTER 3: METHODOLOGY

3.1	Introduction	19
3.2	Project Framework	19
3.3	Planning	20
	3.3.1 Information Gathering	21
	3.3.2 Implementation & Testing	23
	3.3.3 Result Analysis	28

3.3.4 Documentation	29
3.3.5 System Architecture	30
3.3.6 Conclusion	31

CHAPTER 4: PROJECT DESIGN & IMPLEMENTATION

4.1 Introduction	32
4.2 Project Environment Se	tup 32
4.3 Project Implementation	33
4.3.1 Data Gathering	33
4.3.2 Analyze Data	34
4.3.3 Data Preparation	35
4.3.4 Train Model	38
4.3.5 Test Model	45
4.4 Summary	47

CHAPTER 5: RESULTS AND FINDINGS

5.1 Introduction	48
5.2 Results	48
5.2.1 Confusion Matrix	49
5.2.2 Accuracy Score	51
5.3 Findings and Discussions	52
5.4 Summary	53

CHAPTER 6: CONCLUSION AND RECOMMENDATION

6.1 Introduction	54
6.2 Conclusion	54
6.3 Problem and limitations	55
6.4 Future Work Recommendations	55
6.5 Summary	56
FERENCES	57

REFERENCES