
INSTRUCTIONAL STRATEGY IN THE TEACHING OF COMPUT-
ER PROGRAMMING: A NEEDS ASSESSMENT ANALYSES

Mohd Nasir Ismail (Faculty of Information Management Universiti Teknologi Mara Cawangan Kelantan,
18500 Machang, Kelantan, nasir733@kelantan.uitm.edu.my); Nor Azilah Ngah

(Center for Instructional Technology and Multimedia Universiti Sains Malaysia, azilah@usm.my);Irfan Naufal
Umar (Center for Instructional Technology and Multimedia Universiti Sains

 Malaysia, irfan@usm.my).

ABSTRACT

The process of Instructional Design deals with the production of an effective, efficient and appealing instruc-
tional material under different condition, method and outcome. Computer programming is part and parcel
of computer education. Research done in western countries has shown that programming requires problem
solving and analytical thinking skill; unfortunately these skills are found to be deficient among many stu-
dents pursuing computer programming courses. A needs assessment was done to identify whether such a
problem exists amongst Malaysian students pursuing computer programming courses in a Malaysian univer-
sity. Among others, the aim of the needs assessment is to identify the instructional problems pertaining to
the current strategies used for the teaching of programming. This paper reports and discusses the findings
collected from the interviews with five computer science lecturers from the faculty of computer science in
a local university. The result shows that there are deficiencies in knowledge, understanding and application
of computer programming among computer science students. Recommendations are given for further inves-
tigation into a more effective strategy as an alternative in the teaching of computer programming courses

1. INTRODUCTION

Computer programming is part and parcel of
the computer science education. It is an es-
sential skill that must be mastered by any-
one interested in studying computer science.
Normally, in teaching computer program-
ming, students will first be introduced to the
concept of programming and data structure
where they are taught on how to analyze problems,
use specific techniques to represent the
problem solution and validate the solution.
Next the learners are required to convert the
problem solution into a program using a spe-
cific programming language. They are then
required to test their program to verify for
syntactical or logical errors to ensure that the
output is correct according to the problem re-
quirement. Maintenance is the last process in
implementation phase and it is based on user
requirement needs. Maintenance is required
when there are changes in user requirements or
important components. The whole process of
computer programming is shown in Figure 1.
Experience in teaching university level com-
puter programming has proven to be a chal-
lenge to the first author. Many students
found programming to be difficult and dis
heartening. Since programming is the

basic skill required of computer programmers,
the negative impact of these basic introduc-
tory courses may have harmful consequences
in the learners’ attitude towards the field.

2. PROBLEM STATEMENT

Learners’ difficulty with computer program-
ming is not unique to the Malaysian audience.
Research done in western countries has shown
problems with regard to computer program-
ming. The skills that have been identified with
the ability to do programming are problem

1

Figure 1: Programming Process (Dale, Weems
& Headington, 1996)

solving and analytical skills (Riley, 1981; Hen-
derson, 1986; Maheshwari, 1997b; Bonar &
Soloway, 1989; Linn & Clancy, 1992). Howev-
er, according to Riley (1981), many students en-
tering college have problem-solving skills that
are “woefully inadequate”. Henderson (1986)
notes that problem solving and analytical think-
ing skills are students’ major weaknesses in
a computer science course and that a major
theme of a computer science course should be
emphasized on these skills. Programming is
said to be a study of clear thinking and prob-
lem solving in providing the students the prac-
tice of building representations and working
in a methodical manner (Maheshwari, 1997b).
Maheshwari also argues that programming fos-
ters problem solving through a top-down ap-
proach, whereby large problems are separated
into manageable components to be solved in-
dividually and then assembled into the correct
solution to the problem. Programming encour-
ages learners to evaluate their solutions and
thinking process; this cognitive process allows
them to transfer newly acquired problem solv-
ing skills to novel problem situations. Whatever
approach to problem solving is adopted, it is
recognized that it is an essential part and the
first step taken in the development of software.
In addition to problem solving and analytical
skills, difficulty in programming is also attrib-
uted to the prior knowledge and practices; er-
rors also occur in trying to transfer a step-by-
step problem-solving solution directly from a
natural language into a program (Bonar & Solo-
way, 1989). The differences between the natural
language and a programming language can eas-
ily cause problems. For example, some novices
have understood that the condition in a “while”
loop needs to apply continuously rather than
tested once per iteration. Linn & Clancy (1992)
found that “for programmers to develop compe-
tency, they need to have good problem solving
skills and a thoroughly organized knowledge of
a programming language”. In problem solving
phase, a solution or design is generated to solve
the problem and in the implementation phase
the proposed solution is translated into a pro-
gramming language. According to Rist (1996),
the main source of difficulty does not seem to be
only on the syntax or understanding of concepts,
but rather on the program planning.

A student can learn to explain and understand a
programming concept, e.g., what does a pointer
mean, but still fails to use it appropriately in
a program. Winslow (in Soloway & Spohrer,
1989) noticed that students may know the syn-
tax and semantics of individual statements,
but they do not know how to combine these
features into valid programs. Even when they
know how to solve the problem manually, they
have trouble translating it into an equivalent
computer program. Most of the introductory
text books on computer programming empha-
size on the study of a programming language;
the pre-programming topics such as introduc-
tion to algorithmic (pre-coding), and the run-
ning of programs on a computer are eliminated.
According to Gal-Ezer (1996), even if a lec-
turer has introduction to algorithmic in mind,
the emphasis in practice is always on the tech-
nicalities of a programming language, coding
and running programs on a computer. Linn and
Clancy (1992) claimed that most introductory
programming language textbooks reinforce
the emphasis on syntax and on the learning of
individual examples rather than encouraging
students to recognize and reuse more complex
patterns. McGill and Volet (1997) found that
most of the introductory computer program-
ming courses and text books only emphasize
on lower level knowledge or known as declara-
tive knowledge and procedural knowledge that
emphasize on “know that” and “know how”
that are related to programming concepts and
syntax. As a result, students fail to understand
and are not able to explain semantics actions in
a program. The emphasis on low level knowl-
edge will cause students not to understand and
master the programming syntax and constructs.
Thus, learners are not able to apply correct rules
of syntax during programming and are not able
to use semantic knowledge of programming
in writing program to solve novel problems.
Most programming courses are taught us-
ing the traditional approaches including a
blend of lectures, reading and practical
sessions (Gray, Boyle & Smith, 1998). The
environments for these types of approach-
es will only produce students who are pas-
sive information receivers, allow minimal
interaction between teacher and students

2

in practical exercises in writing program
by using correct syntax and constructs.
Students usually react passively during lecturing
and tutorial session and this makes assessment
of student’s mental understanding difficult. At
the same time, they believe that computer pro-
gramming skill is complex and difficult to be
acquired and this could hinder them from ask-
ing questions for clarification. Usually, students
who are able to acquire the programming skill
are those who are highly motivated and inter-
ested in exploring the programming problems.
They are usually actively involved in class
and always seek help and discuss any prob-
lems relating to computer programming with
their lecturers and colleagues. Table 1 shows
the problems identified in the literature con-
cerning problems in computer programming.

Table 1: Problems in computer programming
as identified in the literature

3. OBJECTIVE

The main aim of this research is to identify the
problems in computer programming educa-
tion in Malaysia. A need assessment was con-
ducted to identify problems relating to teach-
ing and learning programming and finding
possible solutions to this problem. The paper
will present the result of this need assessment.

especially when a large
group of students is involved.
Gage and Berliner (1992) also argued that this
type of lecturing is not appropriate if specific
goals and objectives need to be addressed,
need long period of information retention, the
learning materials are complex and abstracts,
students participation in class are essential
to achieve learning objectives and higher
level of cognitive objectives (analysis, synthesis
and evaluation) are the purpose of the instruction.
Dalton and Goodrum (1991) have suggested
that computer programming and problem
solving strategy instruction, when used
together may provide an effective means of teach-
ing transferable problem solving skills. Mahesh-
wari (1997a)also suggested that programming
lessons should employ systematically designed
direct instruction activities, rich in feedback
and practice opportunities. Programming
activities should be designed to encourage
the application of problem solving strategies
such as planning, simplification and model-
ing. She also stated that lessons should quickly
develop a rudimentary mastery of language syn
tax and move quickly to produce application
and problem solving. In other words, teaching
programming should be interesting, motivating
and stimulating for both students and lecturers.
The first author’s experience as a lecturer in
computer science field has shown that stu-
dents need to acquire reasoning, analyti-
cal thinking and problem solving skills for
analyzing problem before they learn how
to use and apply problem representation
tools and computer programming languages.
The students need to understand how to in-
terpret the given problem before they can
represent the correct solution and effectively
use specific tools or techniques. The later skills
can be acquired by doing a lot of practices in
problem solving that involved planning, logi-
cal thinking and reasoning strategies. How-
ever, mastery in the reasoning and problem
solving skills does not necessary mean that
students are able to write good computer pro-
gram as writing programming languages re-
quires the mastering of the syntax and func-
tions of the specific programming languages.
Mastering of these elements require
the students to be actively engaged

3

Problem Solving
Phase

Implementation
Phase

Analysis General Solution Detail Solution

• Lack of
 problem-solving
 skills
• Lack of
 analytical
 thinking skills
• Lack of logical
 and reasoning
 skills
• Lack of
 programming
 planning
• Lack of
 programming
 conceptual
 understanding
• Lack of
 algorithmic
 skills

• Inefficient tools
 used in
 representing
 problem solution
• Do not
 understand and
 unable to explain
 semantics
 actions in a
 program
• Ineffective
 design and
 testing problem
 solution

• Do not understand
 and master the
 programming syntax
 and functions
• Unable to apply
 correct rules of
 syntax when
 programming
• Unable to use
 semantic knowledge
 of programming to
 write program
• Ineffective code and
 testing program to
 solve novel problem

4. METHODOLOGY

4.1 Participants

The needs assessment was done by collect-
ing data from interviews with five expert
lecturers in computer science field at a lo-
cal university. An interview protocol to elicit
information on the problem under discus-
sion was created and used as a guideline dur-
ing the interview sessions. The participation
was voluntary in nature and each interview
session was around an hour to two hours.
Five university lecturers participated in the
study. The selection of the participants is
based on year of experience in teaching com-
puter science programming courses. Two of
them are doctorate and the others are master
degree holders. Four of the participants have
been teaching for more than ten years; mean-
while, the other one has seven years of teach-
ing programming with vast experiences in
software engineering, managing a software
development company involved in develop-
ing commercial computer application systems.
The lecturers are experienced in teaching
various types of programming languages and
paradigms such as C language for structured
programming, C++ for object-oriented pro-
gramming and Prolog and LISP for logic and
artificial intelligence programming language
at both the undergraduate and graduate levels.
Two of the participants are supervising doc-
toral students at the university. They are also
actively involved in research projects and con-
sultations regarding software engineering, arti-
ficial intelligence, parallel processing et cetera.

4.2 Interview Protocol

An interview protocol was developed to elicit
information concerning the lecturers’ perception
on the importance of students’ understanding of
programming concepts, problems and causes of
problems in learning programming. In addition
to identifying the problems faced by students
in computer programming courses, the expert
participants were also asked to talk about the

solutions, methods and strategies they used as
suggestions to their students and used by them
in overcoming some of the problems identified.

5. FINDINGS AND DISCUSSION

In this section, the findings from the needs as-
sessment are discussed. Basically, the four
main problems were identified by the expert
participants. A summary of the problems is
shown in Table 2 and the following discus-
sion will be based on these four main prob-
lems, solutions to some of the problems
identified by the experts and recommenda-
tion by authors on some research possibilities
as the solutions for some of these problems.

5.1 Problem Type I: Lack of Skills in
Analyzing Problems

All the five experts interviewed agree that
students’ understanding of problem solving
concepts in a programming course is essen-
tial for them to learn programming languages.
They said that the lack of understanding of
the programming concepts at most basic prob-
lem solving level will cause difficulty in the
students’ further understanding of program-
ming syntax and functions. The experts be-
lieve that most students take the skills in prob-
lem solving for granted and fail to identify
their programming weaknesses at this level.
However, the experts disagree on the reasons
behind the lack of these skills in this area.

Table 2: Problems identified in the needs as-
sessment process

4

Problem Type
I. Lack of skills in analyzing problems
II. Ineffective use of problem representation
 techniques for problem solving
III. Ineffective use of teaching strategies for
 problem solving and coding
IV. Do not understand and master the
 programming syntax and constructs

One expert believes that the students should
be introduced to a course in discrete math-
ematics and logic before taking any course in
programming. In other words, the students do
not have the prerequisite skills to take pro-
gramming courses. Three of the experts said
that the students were not actually taught and
exposed to proper algorithm solution as the
goals for most programming courses are for
the students to be able to write programs. Un-
derstanding the programming concepts and se-
mantics behind the program were assumed to be
acquired by doing the programming exercises.
Suggestions by the experts to solve the
problems at this phase of programming in-
clude the need for the students to acquire
problem solving, planning, discrete math-
ematics, logic, and creative thinking skills
before they learn programming concepts.

5.2 Problem Type II: Ineffective Use of
Problem Representation Techniques for
Problem Solving

According to the expert participants, at the
basic level of programming (problem solving
phase), two-way discussion approach is used
to discuss the definition statement of program-
ming problem. After defining the problem state-
ment, problem solution are usually designed
using algorithm representation techniques.
Techniques such as pseudo code and flow chart
are used to present the algorithm during prob-
lem solving phase. Both techniques are the
accepted standard or conventional techniques
and are used to explain the concept of program-
ming in most Malaysian universities. The same
techniques are also being used in the comput-
er programming books written by the authors
from western countries. Both techniques are
based on structured problem solving method
whereby a problem is presented in a form of
procedural statements similar to the actual pro-
gramming code (pseudo code) and presented
in a form of control flow or data flow process
(flow chart). At this phase, the problem ap-
pears to be similar to the type of programming
codes that are being taught to the students.
All expert participants agreed that the con-
ventional techniques used to represent the al-
gorithm have created some problems for the

students, especially for those doing object-
oriented programming. According to them,
these conventional techniques are more suit-
able for structured programming approach
and can cause the students to be confused and
unable to translate the algorithm into the cor-
rect programming coding. They also agreed
that the concept of programming that is based
on object oriented approach should be intro-
duced to the students in semester two, that is
after they have already grasp the foundation on
structured approach. Also, according to them,
the object oriented approach is best used to
explain a problem in a form of program en-
tity. Furthermore, at the basic level, most of
the experts interviewed agreed that concept
programming that uses structured approach is
much easier to understand by the students since
this is the approach human use in thinking.
Some of the solutions suggested by the experts
include the use of different problem representa-
tion tools for different types of programming.
This is to say that structured programming ap-
proach should use a different problem repre-
sentation tools than object oriented approach.
The instruction should also be supported by
using visualization approach that would enable
the students to have a mental representation
of the problem. Lastly, the time spent for the
teaching of concepts of programming should
also be made longer to about 3 or 4 weeks.
Currently, the time spent for teaching the con-
cepts of programming is only about 2 weeks.

5.3 Problem Type III: Ineffective Use of Teach-
ing Strategies for Problem Solving and Coding

Three of the expert participants claimed that
the difficulty in understanding the concept of
programming and coding is because of the inef-
fective teaching strategies used during problem
solving and coding. These experiences will un-
doubtedly influence the students’ perceptions on
programming courses as difficult and complex.
One expert participant argued that factors such
as lecturer using ineffective teaching strategies
and taking the matter into granted contribute to
the difficulty in understanding and confused the
students when they try to apply the concept into
programming code. According to this expert par-
ticipant, the effective teaching strategies should

5

start with teaching structured or procedural type
of programming language; object-oriented type
of programming language is not a good start-
ing point to introduce the students to the basic
concept of programming. Two other expert
participants believe that the main cause for the
above problems is the inactive involvement of
students during programming practical session.
All the expert participants also agreed that the
concept of programming should be taught to
the students in a form that support their spa-
tial and visualization abilities as these aspects
will help them to understand and visualize the
process of control and data flow in a program
in a more general context. All of them agreed
that techniques, approaches and strategies used
in teaching programming should be applicable
to the content of programming with different
paradigms in order to help students strengthen
their basic problem solving skills and be able
to plan and organize the solution by using
an effective cognitive strategy. The cognitive
strategy will hopefully help them to acquire
the problem solving skills that together with
knowledge on the syntax of a programming lan-
guage can help them to solve novel problems.
Some of the problems suggested by the experts
include doing enough practical exercises relat-
ing to real world examples as these would al-
low them to apply the concept of programming
correctly to solve novel problem. Practical ses-
sions or tutorial should also be enriched with
activities, feedback and practice opportunities.

5.4 Problem Type IV: Do Not Understand
and Master the Programming Syntax and
Constructs

According to the experts, students need to have
both the understanding of the concept of pro-
gramming and the knowledge of syntax and
constructs of a specific programming language
in order for them to be able to write a good
program. They added that lecturers normally
give lectures on the concepts and principles of
programming along with simple examples of
problems and provide students with practical
exercises to build program concepts and trans-
late them into programs. Practical exercises
are done in the computer laboratory during
tutorial sessions. For the weak students, they

are urged to make appointment for consulta-
tion or create small group remedial session
to help them overcome these problems. The
experts also added that practical exercises are
important and students should be active partici-
pants during these tutorial sessions and should
spend time understanding the syntax, construct,
and concept of the programming languages.
In order to overcome these problems, the ex-
perts have also suggested the collaborative
and cooperative group work amongst the stu-
dents. Team work allows for the use of scaf-
folding and coaching on how to programming
effectively thus allowing them to explain
and understand the programming concept,
know the syntax and semantics of program-
ming statements and know how to combine
these features into valid computer programs.

6. DISCUSSION AND CONCLUSION

Analyses of the data from the needs assessment
revealed some similarities between problems
identified by the expert participants and the first
author’s experience in teaching similar cours-
es. There are gaps or deficiencies in students’
knowledge in computer programming course
in each phase of the programming processes.
Four main problems were identified, includ-
ing (i) the lack of skills in analyzing problems,
(ii) ineffective use of problem representation
techniques for problem solving, (iii) ineffec-
tive use of teaching strategies for problem
solving and coding, and (iv) the difficulty in
mastering programming syntaxes and functions.
According to McGill and Volet (1997), most
introductory computer programming courses
and text books emphasize only the lower level
knowledge, also known as declarative and pro-
cedural knowledge. Declarative and procedural
knowledge are types of knowledge that em-
phasize the knowledge of “what” and “how”
respectively. As such, these are knowledge that
are related to the what and how of program-
ming concepts and syntax. Rist (1996) believes
that the acquisition of only low level knowl-
edge made it difficult for students to apply a
complete form of programming even though
they are able to explain and understand the
programming concept. This will cause the de-
velopment of inert knowledge to the students

6

during the learning process. This is the same
observation made by Winslow (in Soloway &
Spohrer, 1989) where he noticed that students
may know the syntax and semantics of indi-
vidual statements, but they do not know how
to combine these features into valid programs.
Computer programming requires higher level
knowledge or knowledge at the strategic or con-
ditional level. This is the knowledge of “when
and why” which requires meta-cognitive skills
which are apparently are lacking among the
students. Lack of meta-cognitive skills has been
reported in several studies on computer pro-
gramming courses (Linn, 1985; Linn & Clancy,
1992; McGill & Volet, 1997; Oliver, 1993; Vo-
let, 1991). If one were to look at the different
phases of the programming processes as shown
in Table 1, even at the initial and first phase of
problem solving, analysis of the problem re-
quires the student to be able to identify, ana-
lyze, plan and create possible ways to put the
problem into whatever programming language
at hand, a task that requires the highest cogni-
tive dimension identified in the Revised Bloom
Taxonomy (Anderson & Krahwohl, 2001). The
experts’ opinion from this needs assessment
concur with the literature on computer pro-
gramming education in that the critical part of
the programming process starts at the analysis
of the problem solving and consequently will
have an effect on the next phase of the program-
ming sequence. Is there a teaching or learning
strategy that can be used to help lessen the bur-
den at this stage? Is there a need for a specific
kind of technique to represent the individual’s
knowledge and understanding regarding com-
puter programming problem? Are pseudo codes
and flowcharts adequate in helping the students
to see the problem to be programmed? What are
some of the visual representations other than the
flowchart that can be used at this stage? These
are some of the questions that need to be an-
swered and further research need to be done to
find the solution. Otherwise our computer pro-
grammers in the future will not have the skills
necessary to create new applications, merely
users of programs created by others. In the era
of digital technology and knowledge workers,
these are inadequate skills that need to be ad-
dressed in the field of Instructional Technology.

 REFERENCES

7

Anderson, L. W., & Krathwohl, D. R. (Eds.).
(2001). A taxonomy for learning, teach-
ing and assessing: A revision of Bloom’s
Taxonomy of educational objectives:
Complete edition, New York: Longman.

Bonar, J. & Soloway, E. (1989). Pre-program-
ming knowledge: A major source of miscon-
ceptions in novice programmers. In Soloway &
Spohrer (1989), Studying the Novice Program-
mer (pp. 325-354), Mahwah, NJ: Erlbaum.

Dale, N. et.al. (1996). Programming
and Problem Solving with C++. Bos-
ton: Jones and Bartlett Publishers.

Dalton, D. W., & Goodrum, D. A. (1991). The
effects of computer programming on problem-
solving skills and attitudes. Journal of Educa-
tional Computing Research, 7(4), 483-506.

Gage, N. & Berliner, D. C. (1992). Educa-
tional Psychology. Boston: Houghton Miffin.

Gal-Ezer, J. (1996). A pre-programming intro-
duction to algorithmics. Journal of Mathemat-
ics and Computer Education. 30(1), 61-69.

Gray, J. et.al. (1998). Proceedings from ItiCSE
’98: Integrating Technology into Computer Sci-
ence Education, pp. 94-97, New York: ACM Press.

Henderson, P. B. (1986). Proceedings of
the 17th SIGCSE ’86: Technical sym-
posium on Computer Science Educa-
tion, pp. 257-263, New York: ACM Press.

Linn, M. C. (1985). The cognitive consequenc-
es of programming instruction in classrooms.
Educational Researchers, 14(5), 14-16 & 25-29.

Linn M. C. & Clancy M. J. (1992). The case
for case studies of programming problems.
Communications of the ACM, 35(3), 121-132.

Maheshwari, P. (1997a). Improving the
learning environment in first-year program-
ming: Integrating lectures, tutorials, and
laboratories. Journal of Computers in

8

Math ematics and Science Teaching, 16(1), 111-
131.

Maheshwari, P. (1997b). Proceedings from
ACM International Conference Proceeding
Series ’97: Proceedings of the second Aus-
tralasian Conference on Computer Science
Education, pp. 32-39, New York: ACM Press.

McGill, T. J. & Volet, S.E. (1997). A con-
ceptual framework for analyzing students’
knowledge of programming. Journal of re-
search on Computing in Education. 29(3), 276.

Oliver, R. (1993). The contextual model: An alter-
native model for teaching introductory computer
programming. Journal of Computers in Math-
ematics and Science Education, 12(2), 147-167.

Riley, D. (1981). Proceedings from Techni-
cal Symposium on Computer Science Educa-
tion ’81: Proceedings of the twelfth SIGCSE
Technical Symposium on Computer Science
Education, pp. 244-251, New York: ACM Press.

Rist, R. (1996). Teaching Eiffel as
a first language. Journal of Object-
Oriented Programming, 9, 30-41.

Soloway, E. & Spohrer, J. (1989). Study-
ing the Novice Programmer. Hillsdale,
New Jersey: Lawrence Erlbaum Associates.

Volet, S. E. (1991). Modeling and coach-
ing of relevant metacognitive strategies
for enhancing university students’ learn-
ing. Learning and Instruction, 1, 319-336.

