UNIVERSITI TEKNOLOGI MARA

COMPUTER VISION FOR ZOO ANIMALS USING YOLO ALGORITHM

MUAZ BIN WAZIR

BACHELOR OF COMPUTER SCIENCE (HONS.)

JANUARY 2022

STUDENT DECLARATION

I certify that this thesis and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referring practices of the discipline.

UN,

Muaz Bin Wazir 2020971385 JANUARY 29, 2021

ABSTRACT

Zoo has been one of the main tourism attraction for the past decades. For many years, there're always new innovation in all aspects of our daily life with the solve purpose of making things better and efficient for the masses. That is not the case with tourism in general however, especially the zoo industries. For years zoo are fine with being stagnant in which they had remain the same for the longest time, minor innovation here and there a sprinkled to make ths visitor experience better. However, the real innovation are in dier need. The pandemic however has shown us that it is not sustainable to remain static and stagnant. The tourism industry especially have been affected. This calls for a new innovation or a step into improvement. The approach that this paper is taking, is creating an automated system in which a computer is smart enough to detect animals. The applicability aspect of this approach are endless. This paper specifically, suggest that we create the model to improve the user experience while complying with the SOP for pandemics. The project will be using the Agile methodology which is an iteration approach to system development lifecycles instead of hard strict timeline with no versatility and costly backtracks. This this, You Only Look Once (YOLO) is used to create the convolutional neural network.

TABLE OF CONTENT

SUPERVISOR'S APPROVAL	3
STUDENT DECLARATION	4
ACKNOWLEDGEMENT	1
ABSTRACT	2
TABLE OF CONTENT	3
LIST OF TABLES	6
LIST OF FIGURES	7
INTRODUCTION	10
1.1 Background of study	11
1.2 Problem Statement	12
1.3 Research Question	13
1.4 Research Objectives	13
1.5 Research Scope	14
1.6 Significance of Study	14
1.7 Conclusion	14
LITERATURE REVIEW	15
2.1 Overview of tourism and Zoo Negara animals	17
2.2 Type of animals in zoo Negara	18
2.2.1 Mammals	18
2.2.2 Reptiles	19
2.2.3 Insects	20
2.2.4 Fish	21
2.3 Computer Vision	21
2.4 Creating a Computer Vision that detects animals	22
2.5 Technique for computer vision	23
2.5.1 Region Convolutional Neural Network (R-CNN)	23

2.5.2 Fast R-CNN	28
2.5.3 YOLO (You Only Look Once)	31
2.6 Comparison of related works	36
Table 2.1: Comparison of algorithms	37
2.7 Summary	38
METHODOLOGY	39
3.1 Development Methodology	40
3.2 Operational Framework	41
3.2.1 Planning	41
3.2.2 Literature Review	41
3.2.3 Data Acquisition & Strategies	42
3.2.4 Design & Prototype	42
3.2.5 Experiment & Testing	43
3.3 System Architecture	43
3.3.1 Client-Server Architecture	44
3.3.2 Component of System	45
3.4 Hardware & Software Requirement	50
3.4.1 Hardware Requirement	50
3.4.1 Software Requirement	50
3.5 Summary	51
DESIGN AND IMPLEMENTATION	52
4.1 Data Collection	53
4.2 Project Design	57
4.2.1 YOLO V5 model	57
4.2.2 Implementation details	59
TESTING AND RESULTS	65
5.1 Detection classes	66
5.2 Training Metrics	66
5.3 Testing and Result	68
RECOMMENDATION AND CONCLUSION	73