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ABSTRACT 

This paper is a preliminary survey on the developments in the techniques of solving 
multivariate polynomial equations. Currently two main approaches originating from 
algebraic geometry have been used to compute the roots of a zero dimensional 
polynomial system. The first approach involves Grobner bases computations. This 
method involved computing common roots by eliminating a set of variables from a 
system of polynomial equations and thereby reducing the problem to a sequence of 
univariate polynomials. The other approach is based on resultant formulations, 
which can eliminate many variables simultaneously and can also be performed in 
floating point arithmetic. The resultant techniques can also be viewed from linear 
algebra to reduce the root computations to a nonsingular eigenvector problem and 
to find approximate values of the solutions. In this paper, we present an overview of 
the stages and development in the Grobner basis techniques and to discuss some 
basic implementations of the Grobner package in Maple and the computer algebra 
system related to solving multivariate polynomial equations. 

Keywords: Grobner bases, ideal basis, Maple, multivariate polynomial equations, 
variety. 

Introduction 

A polynomial equation corresponds to a polynomial function fix) which is set to 
zero. It is so called a zero function which means matrix) = 0 for allx e k, k is any 
infinite field. The solutions to the equation are called the roots of the polynomial 
and they are the zeros of the function. If x = a, is a root of a polynomial, then (x - a) 
is a factor of that polynomial or (x — a) e k[x] vanishes at a, which gives the zero 
function on the affine space k. 
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Solving a polynomial equation in one unknown is easily done on computer by some 
well known root-finding algorithms. Formulas for the roots of polynomials up to a 
degree of 2 have been known since ancient times and up to a degree of 4 since the 
16th century. However, formulas for degree 5 eluded researchers. In 1824, Niels 
Henrik Abel proved that there is no general formula (involving only the arithmetical 
operations and radicals) for the roots of a polynomial of degree 5 or greater in terms 
of its coefficients (Abel-Ruffini theorem). This result initiates the foundation of 
Galois Theory, which engages in a detailed study of relationships among roots of 
polynomials (Stewart (2003)). 

A system of polynomial equations is a set of n polynomials with coefficients over an 
arbitrary field. Solving systems of polynomial equations is a fundamental problem in 
geometric computations. In particular, it is a crucial or most challenging problem in 
algorithmic algebra and the computational complexity makes it very difficult to 
solve some problems in practice. Yun and Pohst (1981) studied the difficulties in 
computational methods for ideal bases which are useful for solving a system of 
polynomial equations. However, the problems of finding the common zeros of 
polynomial equations are far from satisfactorily solved. The investigations also 
reveal that polynomial systems often result in large number of solutions. 

The theory on systems of multivariate polynomial equations also involves field and 
ideal theory. In recent years, the search for efficient algorithms for solving systems 
of polynomial equations has received renewed attention due to their importance to a 
variety of problems of both practical and theoretical interests. Greuel (2000) stressed 
about the need to count real solutions or to find exact or approximate solutions to 
such systems has arisen in a wide range of practical areas, including robotics and 
kinematics, computational number theory, solid modeling, quantifier elimination and 
geometric reasoning problems. 

The currently known techniques for solving polynomial systems can be classified 
into symbolic, numeric and geometric. In the context of finding exact solution, 
symbolic method based on Grobner bases and resultants originate from algebraic 
geometry and can be used for eliminating variables, which reduces the problem to 
finding roots of univariate polynomials. However, if the reduced equation is of 
degree 5 or more, there are no radical formulae that can solve the equation (Stewart 
(2003)). In such cases, combining the techniques of Grobner bases with other 
numerical techniques, elimination ideal and extension theorem may be desirable. 

New methods for Grobner bases conversion such as the well known FGLM 
algorithm has been developed by Faugere, et al., (1993) and the Grobner Walk 
algorithm can be applied to address the question of an efficient elimination methods 
using a suitable order by using basis conversion. While the main ideas of the 

© 2011 Universiti Teknologi Mara Johor, Malaysia 

157 



Academic Journal UiTM Johor Vol. 10, 2011 

Grobner walk is simple, the actual implementation of the algorithm is less 
understood. 

Later improvement of Buchberger algorithm is the F4 algorithm which was first 
described by Faugere (2002) and'is claimed to be the fastest routines for computing 
Grobner bases in current implementation by Farr and Pearce (2005). They have 
tested the routines under Magma and the time results are presented on Steel's web 
page. 

Another powerful method for polynomial system solving is a method based on 
resultants. Basically this method is only applied to generic polynomial systems. 
However later development in the multivariate resultant makes it possible to solve 
specific application problems efficiently, as revealed in Manocha (1994); Kapur, et 
al, (1994) or Canny, and Emiris (1993). In addition, algorithms for resultant 
computation deal with matrices and determinants. In this approach, combining 
properties from algebraic geometry and linear algebra leads to the construction of 
effective and efficient resultant computations and finding solutions to multivariate 
polynomial equations. 

This paper gives an overview of the stages and development in the Grobner basis 
techniques and to discuss some basic implementations of the Grobner package in 
Maple related to solving multivariate polynomial equations. 

The Algebra-Geometry in Solving Polynomial Equations 

Algebraic geometry relates to the study of geometric objects defined by polynomial 
equations using algebraic tools and is also called a symbolic method. In general, the 

basic problem of algebraic geometry is to study the set of points in k" satisfying a 

system of equations fx (x ; , . . . , xn) = 0, • • •, fm (xx,..., xn) = 0, where k is a field and 

fx,...,fm belongs to the polynomial ring k[xx,...,xn]. The solution set of 

fi — ••• = fm =0 is called the algebraic set, referred also as algebraic or affine 

variety of fx,..., fm and is denoted as V = V(fx ,...,fm). The geometry of interest 
is the affine varieties of curves and surfaces defined by polynomial equations as 
described by Greuel (2000). In finding the most effective solution of the affine 
varieties, the relation between algebra and geometry can be investigated by 
considering the algebraic and geometric objects such as fields, ideals, affine varieties 
and propositions, theorems or corollaries involving them. 

Definition 1 (Properties of multivariate polynomials) 
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Let f{xx,...,xn) = 2_l aax
a bea multivariate polynomial ink[xx , . . . ,xn]. 

(i) aa refer to the coefficient of the monomial xa , aa&k. 

(ii) If an i=- 0, then a„ xa is a term of f. 

(iii) The total degree of / deg( / ) is the maximal | a | such that the coefficient 

aa is nonzero. 

Here, the notation xa represents the power products x"{x"2 ...x"" where each at is a 

nonnegative integer. So, o; = ( a 1 , a 2 , . . . a j£N 1 1 . Several term order can be defined 

on the set of all power products of multivariate polynomials as given below: 

Definition 2 (Becker, and Weispfenning (1993)) 

Let « = («,,...,«„), /? = (# , . . . , / ? J eN" with xx > x2 >--->xn 

(1) Lexicographical order (or Lex-order), symbolically >Lex is defined by 
a>Lex/3 if and only if the left-most nonzero entry in a - j3 is positive. 

(2) Degree-lexicographical order (or DegLex order), symbolically >DegLex is 

defined by «>DegLex/? if and only if deg(or) >deg(/3) or deg(a) = deg(/?) and 

(3) Degree-reverse-lexicographical order (or DegRevLex order), symbolically 

>DegRevLeX
 i s defined by a>DegRevLex/? if and only if deg(a) > deg(/?) or 

deg(a) = deg(/?) and the right-most nonzero entry in a - p is negative. 

Example 1 
(1) XyXj >Lf,x X2X3 . 

(2) XjX2x3 >DegLex x T x 2 and XjX2x3 >DegLex x : x 2 x 3 . 

(3) XjX2x3 >DegRevLex XjX2x3 and xlx2x3 <DegRevLex xlx2x2 

Definition 3 (Becker, and Weispfenning (1993)) 

Let / (Xj , . . . ,x n ) = 2_. aax
a bea nonzero polynomial in k[xx,...,xn]and let > be 

a monomial order. 

(i) The multidegree of / is multigraded(/) = max ((a e Z "0 ) : aa & 0) . 

(ii) The leading coefficient of / is L C ( / ) = amultideg(/) e k. 
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(iii) The leading monomial of / is L M ( / ) = xmu sU' (with coefficient 1). 

(iv) The leading term of / is LT( / ) = LC( / )LM( / ) . 

Example 2 

The polynomial / = 3xyz + Az2 - 3x2 + 7x2y2 in the lex order is 

lx2y2 - 3x2 + 3xyz + Az2. Then multideg(/) = (2,2,0), 

L C ( / ) = 7, LM( / ) = x2y2, L T ( / ) = 7x2^2 . 

Definition 4 (Affine «-space) (Cox, et al., (1996)) 
Given a field k and a positive integer n, the w-dimensional affine space over k is the 

set k" ={(al,...,an):al,...,an e&}. 

From the above definitions, we can relate polynomials to affine «-space over 

k. Any polynomial / = V aax
a e. k[xx,...,xn] gives a function 

/ : k" —> A:defined by the map(a1 5 . . . ,an) —> f(al,...,an). The value 

/ ( « ! , . . . ,«„) is obtained by substituting a a for xa inf. Subsequently, this gives the 

affine variety in A:", namely V(f). 

Proposition 1 (Cox, et al, (1998)) 
Let A: be an infinite field mdfek[xl,...,xn]. Then /= 0 in k[xx,.,.,xn~\ if and 

only if f : k" —> k is the zero function. 

Definition 5 (Affine Variety) (Cox, et al , (1996)) 
Let k be afield, and \Qtfx,...,fm e A:[xp...,xn]. Then the set 

V(fl,...,fm) = {(a1,...,an)skn:fi(al,...,aj = 0\/l<i<m} (1) 

is an affine variety defined by fx,..., fm . It is also called the vanishing locus of/ 

in A:". If ft nonconstant, V(j{ fm) is called a hypersurface mk". 

For simplicity, the affine variety defined by fl,..,,fm is often denoted by the 

symbol V, and the polynomial ring k[xx,..., xn ] is denoted as k[x]. Moreover, this 
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algebraic set depends only on the ideal generated by fi,...,fm'm k[x], which is 

given by 

I = {fl,-Jm) = lfek[x]\f^gifi,giek[x]\. (2) 

By the definition of / , V(I) - {x e k" \ f(x) = 0 for all f el}, and hence 
V = V(I). 

The ideal I = \fx,•••,/„) is generated by fx,...,fm and is the smallest ideal in 

k[xx,..., xn ] containing fl,...,fm. The polynomials f{,...,fm form a basis of / . 

Hilbert Bases Theorem proves that every ideal is finitely generated. 

The radical of an ideal I is given by y/J = {fek[x]:fr el for some r > 1} . An 

ideal / in k[x\ is a radical ideal if / = V/ . There exist some polynomials in k[x] such 
that V = V(I) depends only on the radical of /. Let Aczk such that the biggest 
ideal determined by A is given by 1(A) — {f e k[x]: f(x) = 0 for allx e A}. Thus, 

/ c V7 c 1(A) and V(I(A)) = V(4l) = V(I) = V. Here, A is the algebraic set 

in k" and 1(A) is the vanishing ideal. Vanishing ideals have a property not shared 
by all ideals; they are radical ideals. 
The important Hilbert Nullstellensatz states that, for k an algebraically closed field, 

we have for any variety V cz kn and any ideal J a k[x], 

V = V(J)^I(V) = 4J • (3) 
Therefore we can recover the ideal J, up to radical from its zero set. Farr and Pearce, 
2005 assert that for a field such as C (but not for R ) , geometry and algebra are 
almost equal and that we shall have occasions to see that the difference between / 

and yjl has very visible geometric consequences (Farr, and Pearce, 2005). 

Solving Polynomial Equations 

Let 
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/ l (*!>•..,*,,) = 0 

f 2 ( X l , . . . , x n ) = 0 

(4) 
be a system of m polynomial equations in n variables over a field k. "Solving" the 
system can also mean to determine whether there are many finitely solutions and if 
it is the case, to find the solutions over the given coefficient field k or over some 
extension field of k .If k is a subfield of C , we may be interested to represent the 
solutions symbolically, or to compute floating point approximations of the solutions 
up to a given precision. 

Currently, the techniques of Grobner bases and resultants have received much 
attention as algorithmic methods for symbolic and numeric applications such as 
solving multivariate polynomial equations. Grobner basis algorithm has been 
intensively studied and more applications have been exploited. In particular, solving 
polynomial equations and answering questions about the solvability of such systems 
are the most important applications of Grobner bases that can be found in numerous 
research papers, proceedings or books such as Adams and Loustaunon (1994); Ajwa 
et.al (1995); Aubry et.al (1997); Becker and Weisfenning (1993); Cox et al, (1996, 
1998); and Lebrun and Selesnick (2002). 

Combining Grobner Basis and Numerical Root Finding Algorithms 

The algorithms for Grobner bases computation have been implemented quite 
efficiently in several computer algebra systems, such as Maple, CoCoA, Magma, 
Mathematica, Matlab or Singular. A Grobner basis has the property that the leading 
monomial of every polynomial in the ideal is divisible by the leading monomial of 
some polynomials in the Grobner basis. The Elimination and Extension Theorem 
below can be used to find solutions of multivariate polynomial equations via 
elimination, (Cox, et al, (1998)). 

Theorem 1 (Elimination Theorem) 
If G is a Grobner basis for an ideal / with a monomial order, then 
Gl = G<~\ k(xM,...,xn) is a Grobner basis for the /th elimination ideal /, such 

that I, -I n k[xM xn ] . 
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I, is called an elimination ideal since the variables xl,...,xl have been 

eliminated. A variation of Theorem 1 with its proof is given in (Decker, and Lossen, 

2006), considering two sets of variables {xx,...,xn} and {yx,—,ym} ordered by term 

orders <x, <y respectively, termed as an elimination order. An application of the 

elimination order to constructing a method of finding the generators for the 
intersection of two ideals is also presented. 

Theorem 2 (Extension Theorem) 

If k is algebraically closed, then a partial solution (a /+1,...,an) in V(I,) extends 

to (a ; , aM,..., an) in V{It x) provided that the leading coefficient polynomials of a 

lex Grobner basis for 7 M do not all vanish at(<2/+1,...,aH). 

If the Grobner basis G and {fi,•••/„,} generates the same ideal / then 
V(fl,...,fm) = V = V(I) = V(G). Therefore, finding the roots of G give the 
variety of / , V . The Elimination Theorem implies that a lex Grobner basis reduces 
the problem of solving the system in (4) to the problem of solving a sequence of 
univariate polynomials. Since the elimination keep on eliminating the variables, 
reducing the system to an equivalent triangular form, the Grobner basis polynomial 
with the least number of variables is univariate, say in xn. From this polynomial we 

can find the partial solution (an) e V(In_l) , which can be extended one variable at a 
time using backward substitution, that is, solving a univariate polynomial equation in 
the /th variable for l — n — \,n — 2,. . . ,2,1, successively until all the solutions are 
obtained. A simple example illustrates this procedure: 

Example 3 

Let fx=x -2xy + y3 and f2=x —Ixy + y5 be a system of twobivariate 

polynomials in Q[x, y]. Applying the Grobner package in Maple gives: 

>with(grobner): 
>PListl:=[xA3-2*x*y+yA3,xA5-2*xA2*yA2+yA5]: 
>VListl:=[x,y]: 
>Gl=gbasis(PListl, VListl, plex); 
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G\ := [x3 - 2xy + /,200xy2 +193/ +158/ - 4 5 / - 456/ + 5 0 / -100, y10 + 2 / - / - 2 / ] 

>factor(yA10+2*yA6-yA8-2*yA7); . 

/ ( / + 2 y + 2)(y-l)2 

>solve(convert(Gl,set),{x,y}); 

{x= 0, y = 0 }, { x = 0 , v = 0 }, {„v = 0, y = 0 }, { y = 1, x = 1 }, 

{y = RootOf ( _ Z ! + 2 _ Z + 2 ) , i = -RootOf (__Z 2 + 2 Z + 2 ) - 2 } 

In this example, the Grobner basis which generates the ideal I = \flf2) is given by 

G= {x3 -2xK+y, 200;/ +193/ +158/ - 4 5 / - 4 5 6 / +50 / - 1 0 0 / , / ° + 2 / - / - 2 / } . 

G = G0 u Gj such that 

G0 = {x3 -2xy + y\200xy2 + 1 9 3 / + 1 5 8 / - 4 5 / - 4 5 6 / + 5 0 / - 1 0 0 / } . 

G 1 = { / ° + 2 / - / - 2 / } 

Factorizing the univariate polynomial in G{ gives 

/ ° + 2 / - / - 2 / = / ( / + 2y + 2)(j; -1) 2 (5) 

and solving for y in (5) gives V{IX) = {0,1, - 1 - i, 1 + / } . 

Each _yt. e V(Iy), is substituted into each polynomial g e G0. 

For j - 0, G0 = {x3,0} . Therefore, (0,0) 6 V(I0) . 

For y = 1, G0 = {x3 - 2x +1,200x - 200} which gives (1,1) e V(I0) . 

For y = —\ — i , we obtain x = —l + i which implies that ( - l + i , - l - / ) e F ( / 0 ) . 

For y = -l + i, x = -l-i, which gives(-1 - i , - 1 + /) e F ( / 0 ) . 

Therefore, there are four zeroes of the system which is given by 

F = {(0,0),(l,l),(-l + / , - l - 0 , ( - l - i , - l + 0}-

If the Grobner basis polynomial with the least number of variables is univariate and 
irreducible overQ[, Maple procedure gives a purely algebraic structural description 
of the solutions. If this solution is inexact, a numerical approach can be executed. 
However, substituting an approximate root into a polynomial in order to find the 
coordinates of the other variables will also give a polynomial, which is also an 
approximation. For systems with a large number of variables, accumulated errors 
after several approximation and extension steps can build up quite rapidly and the 
effect can be particularly severe if equations of high degree are present as stated in a 
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book of Cox, et al , (1998). The effect on the roots of polynomials with approximate 
coefficients can be illustrated in the following example. 

Example 4 

L e t / = (x + 2) (x + 4) . If we perturb the coefficient of x3 i n / , we obtain a 

polynomial g =f+ O.OOOlx3 = x5 + 16x4 + 100.000lx3 + 304x2 + 448x + 256 with 

approximate coefficients so that g is a polynomial that approximates / . Applying 

the function fsolve in Maple to approximate the solutions to g we obtain the 

approximate solutions -4.059 + 0.17,-3.881,-2.010,-1.990 with a root which 

belongs to C . It is difficult to determine the nature of the solutions of g. On the 

other hand, computing the exact solutions of / gives a double root x = 2 and a root 

x = - 4 of multiplicity three. 

Numerical methods are considered as unstable in an unpredictable way as proved by 
Decker, and Lossen (2006) which may have problems with over determined systems, 
as well as systems with multiple or equal spaced roots. In Cox et al., (1998) some 
examples of these problems are given and suggestions on the approach to 
circumvent these problems are presented. In Decker and Lossen (2006) the 
possibility of using Grobner bases in a symbolic-numerical approach to solving is 
explored. Such an approach makes use of the symbolic methods to find additional 
information on the algebraic structure of the solution set which allows some control 
of the numerical methods and to preprocess the given system of equations so that it 
is expected to be better suited for numerical methods. 

In the following, we present the developments of the Grobner bases algorithms, 
which originate from the Buchberger's algorithm, and improvised through several 
stages with the aim of producing more efficient algorithms. 

Developments of Grobner Basis Algorithms 

The first algorithm for computing Grobner bases is based on polynomial ideal 
theory, which generates special bases for polynomial ideals with respect to a term 
ordering, due to Buchberger as surveyed in Buchberger (1985, 1989). Its 
applications include ideal membership testing and performing algebraic operations 
like union, intersection on ideals, in addition to eliminating a set of variables or 
computing the numerical solutions of a system of polynomial equations. In fact, it is 
a technique that provides algorithmic solutions to a variety of problems in 
computing algebra and algebraic geometry (Gianni, et.al, (1988)). It is also known as 
a computational tool for testing solvability of a system of polynomial equations, for 
counting the number of solutions (with multiplicities) and computations involving 
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the quotient ring modulo the given polynomials. In general, Grobner basis is a set of 
multivariate polynomials that has desirable algorithmic properties that can be 
reduced to triangular form and is regarded as an analogue of Gaussian elimination 
for multivariate polynomial reduction. 

The basic idea to the theory of Grobner bases is about polynomial reduction to 
compute a normal form from an S-polynomial of a given polynomial as stated in the 
Definition below. 

Definition 6 (Ajwa, et al, (1995)) 
G = {gj , . . . , gs} of an ideal is a Grobner basis if for all / e / , there is gt such that 
leading monomial of git (LM(g, )) divides the leading monomial off, (LM(/~)). 
G = {gx,...,gs}of I is a Grobner basis if and only if for all i, j , the S-

polynomial (g., g.) —^ 0 . 

The first algorithm to compute Grobner bases seemed to be very slow since the 
computed Grobner bases is not reduced and there are some reductions S-polynomial 
that can be avoided. As a result, Buchberger (1989) developed a criterion to detect 
unnecessary reductions and allows detecting the S-polynomials that will reduce to 
zero without carrying out the reduction. Consider the following: 

Lemma 1 (Buchberger's criterion) 
Let / b e a polynomial ideal and fix a monomial order >- on k[x]. Then a basis 

\gl,...,gr) for / is a Grobner bases for / if and only if for all pairs (i, j) with i i=-j, 

there exist hf,..., h, e k[x] such that 

and 

LCM(LMfe), UA(gj)) >- LM (hfgt) 
for any 1 < t < r, where S{gi,gj) denotes the iS-polynomial ofgt and gj, LM denotes 
leading monomial, and LCM stands for the least common multiple. 

Buchberger Criterion (Ajwa, et al., (1995)) 

1. In the process of picking a pair {ft ,fj}, choose a pair such that LCM 

(LM (ft), LM ( / . ) ) is minimal among all the pairs. 
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2. If the LM (ft) and LM ( / . ) are relatively prime, then S-poly (/ . , / . ) reduces 

to zero and can be ignored. Thus pick a pair {fi, f.} such that LM (f.) and 

LM ( / . ) are not relatively prime. 

3. If there is an element fk of the basis such that the LM (fk) divides LCM 

(LM(/;.), L M ( / . ) ) and if the S-poly ( / „ fk) and the S-poly ( / , , / , ) have 

already been considered, then S-poly (fi, f.) reduces to zero and could be 

ignored. 

Buchberger criterion states that a set G is a Grobner basis if and only if all its S-
polynomials have normal form zero. In particular, the modified Buchberger's 
algorithm after refinement is more efficient than the original Buchberger's 
algorithm. 

FGLM and Grobner Walk 

The computation of Grobner bases varies substantially when we use different 
monomial orderings. The time required for computing a Grobner basis can grow 
drastically with the degree, size, and number of input polynomials, as well as the 
number of variables. Pure lexicographic order leads to a triangular system for 
solving the original system. However pure lexicographic order frequently requires a 
large amount of computation. On the other hand, it is possible to compute a grevlex 
Grobner basis first and then converting it to a lex basis using the FGLM basis 
conversion algorithm which was constructed by Faugere et al., (1993). This change 
of basis algorithm can be utilized for solving zero-dimensional systems of equations 
(Decker and Lossen (2006)) and is considered to be more efficient than the first and 
modified Buchberger algorithms. Another method for Grobner bases conversion is 
the Grobner Walk. Both algorithms are implemented in Maple, and can be applied 
to address the question of an efficient elimination method using a suitable order by 
using basis conversion. 

The Grobner Walk and FGLM algorithms convert a Grobner basis of commutative 
polynomials from one monomial order to another. They are frequently applied when 
a Grobner basis is too difficult to compute directly. The Walk command (applied in 
Maple) takes a Grobner basis G with respect to a monomial order T, and returns the 
reduced Grobner basis for G with respect to T2 (command sequence: Walk(G, T, 
T2)). Walk supports the following types of monomial orders: 'plex', 'grlex', 'tdeg', 
'wdeg', 'lexdeg', 'matrix', and products of these orders formed using 'prod'. Unlike 
FGLM, the ideal defined by G can be of any dimension. The Grobner walk is 
typically not as fast as FGLM on zero-dimensional ideals. The Walk command does 
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not check that G is indeed a Grobner basis with respect to T. One example of code 
using Walk command in Maple 10 is illustrated below: 

Example 5 
>F:=[10*x*z-6*xA3-8*yA2*zA2,,-6*z+5*yA3]: 
>G:=Basis(Fl,tdegree(x,y,z)): 
>Walk(G,tdeg(x,y,z),plex(x,y,z)); 

-6z + 5y3, -5xz + 3x3 + 4y V 

Unfortunately, although FGLM command also takes a Grobner basis G with respect 
to a monomial order T, and returns the reduced Grobner basis for G with respect to 
T2 (command sequence: FGLM(G, T, T2)), but the ideal defined by G must be zero-
dimensional. Otherwise, the algorithm will not terminate. FGLM supports the same 
monomial orders as Walk but cannot convert to 'wdeg' or 'matrix' orders, or to any 
product order that makes use of one of these orders. These orders are perfectly valid 
as a starting point. The FGLM command does not check that G is indeed a Grobner 
basis with respect to T. If no truncation order is specified, then it checks whether G 
is a zero-dimensional system. This check may fail if G is not a Grobner basis. An 
example of using FGLM command in Maple 10 is given below. 

Example 6 
>F:=[xA3+x*y-yA2+l,yA3-x*y+x] ; 
>G:=Basis(F,tdeg(x,y)); 

G:- [y3 -xy + x,x3 + xy -y1 +1] 
>FGLM(G, tdeg(x,y), plex(x,y)); 

[ / +/ -3y5+4y4-2y1 -2y2 +3y-l,x + y8 + y6 + 2y5 -y4+3y3 + y2-2y + l] 

For some large systems with big coefficients, a lexicographic Grobner basis cannot 
be computed, even with FGLM (Faugere et al , (1993)). Nevertheless, such systems 
can be solved in Maple on the Katsura-4 system applying a rational univariate 
representation (Monagan et al.,(2005). 

Example 7 
> katsura4 := [2*x*t+2*u*y+2*z*t-y, 2*t+u+2*x+2*y+2*z-l, 
2*t*u+x*y+2*z*t+2*y*z-t, tA2+2*y*t+2*z*u+2*x*z-z, 
2*tA2+uA2+2*xA2+2*yA2+2*zA2-u]: 
G := Basis(katsura4, tdeg(x,y,z,t,u)):map(length@maxnorm, G); 

[1,1,2,2,2,3,4,4,4,12,12,12,22] 
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Here, the largest coefficients appearing in the total degree Grobner basis have 22 
digits. The coefficients in the rational univariate representation will be of a similar 
order of magnitude, so we can run FGLM modulo a sufficiently large prime, and 
then apply rational reconstruction to compute the result. The algorithm described in 
the following section is another improvement of Buchberger algorithm. 

F4 Algorithm 

Grobner bases provide a general tool for studying arbitrary polynomial ideals, 
eliminating variables as well as finding the common roots of a system. However, 
the large coefficient size and the degree of the basis polynomials to be solved are the 
main limitations for Grobner bases. In fact, the time complexity of the algorithm 
makes it impractical. This is due to the repetitions of the process during the 
elimination. Moreover, in Knuth (1981) and Moller (1993), it is stressed that the 
worst case of Buchberger's algorithm is known to run in double exponential time, 
and on average its running time seems to be single exponential. In particular, for 
solving sparse system, the complexity of Grobner bases techniques is still 
impractical and hard to determine. 

Later, in 1991, Faugere proposed a new efficient algorithm for computing Grobner 
bases, which is known as F4 algorithm, and Farr, and Pearce (2005) discussed its 
various strategies. The F4 algorithm consists of a very simple improvement; one runs 
the Buchberger algorithm but at each step selects multiple syzygies. They are placed 
into a common matrix along with any rows that are needed for the reduction process, 
and this matrix is triangularized. The rows with new pivots correspond to new 
polynomials, which are then added to the basis. In particular, one should select all of 
the syzygies of smallest degree at each step of the algorithm, and reuse rows from 
previously reduced matrices where possible. This detail description can be 
summarized that F4 algorithm is simultaneous reduction of all polynomials and a 
combination of Buchberger criteria and very efficient linear algebra. Continuation 
from F4 algorithm, Faugere comes out with another algorithm named F$ algorithm 
that construct matrices iteratively on the degree and on the number of equations, and 
replace Buchberger criteria with new criteria to avoid reduction to zero, as described 
in Decker and Lossen (2006) and Faugere (2002). 

One way to visualize the F4 algorithm is to consider the reduction of a single S-
polynomial in the Buchberger algorithm. Consider the example in Faugere (2002) as 
shown below: 

Example 8 
Let G = [x2 +y,xy2 -xy,y3 - 1] where Gx = x2 + y , G2 = xy2 - xy, G3 = yl - 1 , 

© 2011 Universiti Teknologi Mara Johor, Malaysia 

169 



Academic Journal UiTM Johor Vol. 10, 2011 

and consider the syzygy S\t2
 = x y + y under graded lex order. In the division 

algorithm, 5*1,2 is reduced first by subtracting yG\ and then by subtracting G3, as 
shown below. 

x2y+y3 
-»x>- -f-ytf+y)'- -y2-*y' • / - ( V 3 - ! ) •y 1. 

The key observation is that this reduction process is equivalent to a matrix 
triangularization. In the example below, the columns of the matrix correspond to the 
monomials [x2y, y3, y2, 1], while the rows contain Si,2, y Gi, and G3, respectively. 
Examining the reduced matrix on the right, we find one new pivot belonging to y2 -
1. 

1 1 0 

1 0 1 

0 1 0 

0" 

0 

- 1 

-> 

1 1 0 0 

0 1 - 1 0 

0 0 1 - 1 

From this perspective we can detect the weakness of the Buchberger algorithm. It 
selects syzygies one by one, and for each one it triangularizes an entire matrix. 

However, this potential improvement is not fully realized because the next 
improvement, computing modulo a number of primes, offsets some of the 
advantages. In such algorithm, the matrix will be reduced modulo a number of 
primes until the desired rows can be recovered using Chinese remaindering and 
rational reconstruction. Over algebraic function fields, sparse rational function 
interpolation can also be used so that the cost of recovering each row becomes 
significantly higher. Unfortunately, in any case the best strategy seems to be a hybrid 
approach. That is, after the initial reductions modulo a prime, one can identify rows 
with new pivots and further reduce them using the rest of the matrix. These sparse 
rows are easier to reconstruct, and as a side effect one computes the reduced Grobner 
bases automatically. In 2005, Far and Pearce have been working on a more robust 
implementation of F4for Maple 10 (Faugere, 2002). 

Conclusion and Future Work 

Computational methods for manipulating sets of polynomial equations are becoming 
of greater importance due to the use of polynomial equations in various applications. 
In some cases we need to eliminate variables from a given system of polynomial 
equations to obtain a symbolically smaller system, while in others we desire to 
compute the numerical solutions of non-linear polynomial equations. 
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The method of Grobner bases deals with ideals and varieties. Apart from that, the 
method depends on the monomial order in the polynomial representation and the 
computational complexity of the method is still impractical and hard to determine 
for large sized systems. When it comes to practice, Grobner bases method is slow 
and not effective for a variety of reasons compared to resultants as in Kapur and 
Saxena (1995).. However, Grobner bases method can be applied to arbitrary 
systems of polynomial equations as compared to resultant based techniques, which 
basically deal with generic systems. The method of resultant involves computing 
determinants of large matrices besides having to reduce or eliminate the presence of 
extraneous factors in its computation. Numerous research articles concerning the 
computational problems in solving polynomial systems can be found. 

Combining elimination with numerical root finding can have potentially severe 
difficulties when the approach is implemented on computers using finite precision 
arithmetic. To handle this problem, it is possible to apply algebraic tools based on 
the algebraic structure of the quotient ringsk[xx,...,xn]/1. By applying these tools 

from algebraic geometry, alternative numerical methods for approximating solutions 
of polynomial systems can be developed considering real root counting and root 
isolation to get a better approximation of the desired solutions. 
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