UNIVERSITI TEKNOLOGI MARA

DIAGNOSIS OF DENGUE USING FUZZY EXPERT

NurHazirah Binti Abdul Wahab

BACHELOR OF COMPUTER SCIENCE (Hons.) FACULTY OF COMPUTER AND MATHEMATICAL SCIENCES

January 2022

Abstract

"Dengue is a mosquito-borne tropical disease caused by the dengue virus. Dengue is spread by several species of female mosquitoes of the Aedes genus which is Aedes aegypti." However, the dengue symptoms have many similarities with other diseases likes malaria. In addition, the diagnosis dengue manually may occur some human error which make the diagnosis dengue is inaccurate. This paper is presents the used of fuzzy expert system in diagnosis the disease with the objectives to identify clinically-known dengue symptoms, develop the diagnosis system using MATLAB and Fuzzy Logic Toolbox, and classify the dengue symptoms from the information received. The methodology of this paper is waterfall model which is life cycle of the system development (SDLC). Moreover, the paper is about the development of system to help doctor to diagnosis dengue symptoms more efficient. The development of dengue diagnosis using fuzzy expert will improve the work capability for all the doctors because the system help in the diseases analysis with more accurate and efficient. The technique Mamdani fuzzy inferences is the most suitable in development of the system because this system need output membership function.

TABLE OF CONTENTS

CONTENT	PAGE
ABSTRACT LIST OF FIGURES LIST OF TABLES CHAPTER ONE : INTRODUCTION	2 5 6
1.0 Introduction	7
1.1 Background Study	7
1.2 Problem Statement	8
1.3 Research Objective	8
1.4 Research Scope	9
1.5 Significance	10
1.6 Conclusion	10
CHAPTER TWO : LITERATURE REVIEW	
2.1 Introduction	11
2.2 Dengue	12
2.3 Artificial Intelligence	13
2.3.1 Expert System	14
2.3.2 Fuzzy Logic System	15
2.3.3 Fuzzy Expert System	16
2.4 Techniques Of Fuzzy Inferences	18
2.4.1 Mamdani Fuzzy Inferences	18
2.4.2 Sugeno Fuzzy Inferences	19
2.5 Common Features Related To Project	20
2.5.1 Early Diagnosis of Dengue Disease Using Fuzzy Inference System	20
2.5.2 Image Processing for Detection of Dengue Virus based	
on WBC Classification and Decision Tree	21
2.5.3 Dengue Fever Prediction Using K-Means Clustering Algorithm	21
2.6 Justification	25
2.7 Conclusion	25

CHAPTER THREE : METHODOLOGY

CONTENT	PAGE
2.1 Introduction	26
	20
3.2 Methodology Overview	27
3.2.1 Planning	28
3.2.2 Information Gathering	29
3.2.3 Design	29
3.2.4 Implementation	30
3.3 Development Methodology	30
3.3.1 Data Collection And Analysis	31
3.3.2 Design	33
3.3.3 Implementation	34
3.3.4 Evaluation	35
3.4 System Architecture	36
3.5 Hardware And Software	36
3.5.1 MATLAB	36
3.5.2 Fuzzy Logic Toolbox	36
3.6 Conclusion	

CHAPTER FOUR : RESULT AND ANALYSIS

4.1 Analysis requirements of projects design and development	
4.1.1 Data requirement	37
4.2 Project design	
4.2.1 Diagram of overall process	37
4.2.2 Interface design	45
4.3 Testing	47
4.4 Summary	47

CHAPTER FIVE : CONCLUSION AND FUTURE WORK

5.1 Conclusions	48
5.2 System Benefits	49
5.3 Recommendations	49
5.4 Summary	49

50

LIST OF FIGURES

FIGURE	PAGE
2.1 Literature Review Concept Map	11
2.2 Sign and symptoms	13
2.3 The Turing imitation game	14
2.4 The range of logical values in Boolean and fuzzy logic	16
2.5 The architecture of Fuzzy Expert System	17
2.6 K-means algorithm process	23
3.1 Methodology Phases Framework	26
3.2 Waterfall model	30
3.3 Flow Diagram of the Proposed System	32
3.4 Example interface user for dengue diagnosis	33
3.5 Fuzziness of the proposed expert system	34
3.6 System architecture	35
4.1 Membership function for Eye, muscle, bone, and joint pain	38
4.2 Membership function for rash	39
4.3 Membership function for high fever	40
4.4 Membership function for platelet count	41
4.5 Membership function for white blood count	42
4.6 Output membership function for dengue result	43
4.7 The fuzzy rule-based	44
4.8 User interface	45
4.9 Database	46
4.10 Rule viewer	46