FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA JOHOR

FINAL REPORT: LOW COST SOLAR INVERTER BATTERY CHARGER

AZIQ AZIZI BIN AHMAD JOHNIE 2012242304 SITI NURHUSNA BINTI BAHARIN 2012261484

SUPERVISOR: ZATUL IFFAH BINTI ABDUL LATIFF

ACKNOWLEDMENT

Alhamdulillah and praise to Allah S.W.T. to give us healthy to complete our Final Year Project report. We would like to take this oppotunities to thank everyone who help us and give us a little idea throught out this project.

We would like to thank our project supervisor, Madam Zatul Iffah binti Abdul Latiff for her guidence, knowledge and moral support for all this time until we manage to complete our Final Year Project 1 report.

Special thanks to our parents, who always encourage us and give us support until we succesfully complete our report. My gratitude to all my friends, who directly and indirectly involves in our project report.

AZIQ AZIZI BIN AHMAD JOHNIE

2012242304

SITI NURHUSNA BINTI BAHARIN

2012261484

ABSTRACT

The Solar Inverter is an important component in any solar power system. Solar inverter is a device that can convert direct current into alternating current. Sizes of inverters needed may vary, depending on the usage and the equipments or appliances used. Inverters are generally rated by the amount of AC power they can supply continuously. Solar inverters require a high efficiency rating. Since use of solar cells remains relatively costly, it is paramount to adopt high efficiency inverter to optimize the performance of solar energy system.

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.4.1	Example of the solar panel	8
2.4.2	Example of volatge regulator circuit	9
2.4.3	Example of inverter circuit	9
2.4.4	Rechargeable battery	10
2.4.5	12-0-12 step-up transformer	11
3.1.1	Circuit simulation of battery charger	13
3.1.2	Circuit simulation of inverter	14
3.2	Flow chart of the whole system	15
3.3	Flow char of hardware process	17
3.4(a)	Resistor	19
3.4(b)	IC 7812	19
3.4(c)	IC LM 338	20
3.4(d)	Transistor	20
3.4(e)	Capacitor	20
3.4(f)	Diode IN 5408	21
3.4(g)	MOSFET IRFZ44n	21
3.4(h)	Gate (4093)	21
3.4(i)	Switch	22
3.4(j)	Strip board	22
3.4(k)	Breadboard	22

3.4(l)	Wire jumper	22
3.4(m)	Solar panel	23
3.4(n)	Rechargable battery	23
4.2	Schematic design using Proteus	24
5.2(a)	Circuit simulation before run	27
5.2(b)	Circuit simulation after run	28
5.3	Circuit testing on bread board	29
5.4(a)	Circuit connected to battery	30
5.4(b)	Circuit on breadboard	31
5.4(c)	Check the conectivity on breadboard	32
5.4(d)	Wire connected to bulb holder	33
5.4(e)	Connection to bulb	34