RECYCLE WEIGHING SCALE

MUHAMMAD BUKHHARI BIN ABDUL RASHID MUHAMMAD FAIQ BIN MAT NOR

A project report submitted to the Faculty of Electrical Engineering,

Universiti Teknologi MARA in partial fulfillment of the requirements for the award of

Diploma of Electrical Engineering.

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

SEPTEMBER 2015

ACKNOWLEDGEMENT

Firstly, all of our thankful is to Allah because Allah is the only one who permits us to complete our final year project safely and successfully without any unwanted things. Secondly, we would like to express our deep and sincere gratitude to Universiti Telenologi Mara, Cawangan Johor Campus Pasir Gudang for giving the opportunity to be an appearantice and create our final year project.

Deepest thanks to our supervisor, Miss Nur Darina Bt Ahmad for her encouragement and advice during this twelve weeks while undergoing the project. We wish to express our deepers and sincere thanks to all lecturers and friends who had helped us and guided us during doing our project period. Their patient and knowledge which they shared with us have been very helpful and great value for us.

We owe our loving thanks to our family and friends especially to our mother, father, brothers and sister. Without their encouragement and understanding, it would be difficult for us to finish this project and report.

ABSTRACT

This project is called a recycle weighing scale. This project was invented from a conventional weighing scale which was designed to help user to know the price of the object that was measured. This project has its limitation which is 5 kilogram. For this project, we had used Arduino Uno, load sensor (5kg), LCD keypad shield, LED, battery, and buzzer. The LCD will show the weight and the price of the object measured. This project has several objectives that to be achieve. The objectives are as follow, first, to design a system that can make multitask in a time. Next, to design a simple task that can be run with the program. Lastly, to make the system and circuit function well like we had planned. The process of the project is the user can choose the item that want to be measured like newspaper, plastic, aluminium, and glass. Then, the LCD will display the actual weight of the item measured with its price per kilogram.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	CANDIDATE DECLARATION	11
	SUPERVISOR'S APPROVAL	111
	ACKNOWLEDGEMENT	v
	ABSTRACT	V1
	TABLE OF CONTENT	vii
	LIST OF FIGURES	1X
	LIST OF TABLES	xi
1	INTRODUCTION	
	1.1 Background Study	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Scope Of Study	3
	1.5 Project of Contribution	4
2	LITERATURE REVIEW	
	2.1.1 Analogue Weighing Scale	6
	2.1.2 Digital Weighing Scale	7
	2.1.3 GSM based Garbage and waste	
	collection bins overflow indicator	8
	2.2 Component Use In Project	
	2.2.1 Arduino	11
	2.2.2Weight Sensor	13
	2.2.3 LCD	17

CHAPTER	TITLE	PAGE
	2.2.4 HX 711	19
3	METHODOLOGY	
	3.1 Gantt Chart FYP 2	21
	3.2 Flow Chart Of FYP 2	22
	3.3 Flow Chart 'Smart Luggage' Operation	24
	3.4 Block Diagram	26
4	RESULT AND DISCUSSION	
	4.1Introduction	27
	4.2Simulation Result	28
	4.3 Connection of the Load Cell, Hx 711	
	andArduino Uno R3	30
	4.4 Result Hardware	32
	4.5 Discussion	37
5	CONCLUSION AND	
	RECOMMENDATION	
	5.1 Conclusion	39
	5.2 Recommendation	40
	REFERENCE	41

APPENDICES