


NORAINI MOHAMED ET AI.

is a result of Quality Movement that has been practiced here since the establishment of Pahang
campus. All aspects of teaching and learning, organization of administration and daily operations
are covered by this movement. As a result, a number of software was produced in order to assist
the Quality work that has been practiced. The development of the software is also to further
sustain the accreditation obtained so that the quality may be retained if not improved. But one
has to bear in mind that the Software itself is subjected to a number of quality issues. This is
because only quality software will perform quality task designed for it to perform.

A set of criteria of a quality software among them are reliable, robust, correct and timeliness.
In addition, the ISO 9126-1 software quality model identifies six main quality characteristics,
namely:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

Though the criteria mentioned seems to be very easily achieved, in reality it is not so,
especially for an academic institution where the software is developed by the lecturer whose
primary task is teaching and coaching. Another reason is that the quality of the software is
important to the customer and in UiTM Pahang the customer happened to be the developer of the
software itself. Therefore, there is a need to dissolve the quality issues regarding software since
the software is part of a tool used to achieve the overall quality. The place that the quality of the
software should start is at the process that produced the software as suggested by Huges &
Cotterel (2006).

Software Quality Assurance (SQA) in Practice

The Need for SQA

Software production, developed or engineered via a software project need a careful planning
since a lot of resources, which may be classified as very scarce are involved, such as man power,
skill, time and cost. This careful planning and managing of software process is defined as SQA
which encompasses the entire software development process. The processes are designing,
coding, source code controlling, code reviewing, changing management, configuration
management and releasing management (Wikipedia, 2008). In other word, it can be described as
a control of processes that produced the software. SQA at a fundamental level, specifies all those
process-related activities that are undertaken in the pursuit of achieving software quality. It
involves careful attention to the specification of the requirements to be satisfied, to ensure they
accurately capture what is wanted or intended (validation), and the formulation of the test cases
that can be used to demonstrate their eventual satisfaction in code (verification).

SQA plan carried out thoroughly by quality assurance professionals will grant certain
benefits such as improved customer satisfaction and reduced cost of development and
maintenance. For instance, internal failures are the costs related to software defects that are
found before shipping products to customers. Internal failures activities include correcting flaws
in requirements and design; reviewing requirements and design changes; correcting flaws in

30



NORAINI MOHAMED ET AI.

purchased software; retesting purchased software corrections; and most importantly, reporting,
tracking and fixing defects in the software being developed. Most organizations fail to recognize
that each additional iteration of integration and system testing acts to the cost of internal failures
(Cognence Inc., 200S).

Fletcher Buckley had developed IEEE standard 730 for software quality assurance, which
was completed in 1979. The purpose of IEEE Standard 730 was to provide uniform, minimum
acceptable requirements for preparation and content of software quality assurance plans
(Buckley, 1984). This standard was influential in completing the developing standards in the
following topics: configuration management, software testing, software requirements, software
design, and software verification and validation.

The objective of SQA is to assure sufficient planning, reporting, and controlling to affect the

development of software products which meet their contractual requirements (Fischer, 1978). To

implement this objective, eight quality assurance (QA) functions can be identified, which are
initial quality plarming, development of software standards and procedures, development of
quality assurance tools, conduct of audits and reviews, inspection and surveillance of formal
tests, configuration verifications, management of the discrepancy reporting system and retention
ofQA records.

Methods in SQA

SQA activities as defined by Boger & Lyons (1984), usually design around a number of
variables such as:

a) Size of the software
b) Degree of criticality of the software
c) Platform used
d) Level of user
e) Type of release
f) Relationship with the user
g) The cost of implementing a fix after release versus the cost of doing it right the first

time.

Many methods come to existence to assure the quality of software as mentioned above are
all geared towards disciplined approach to meeting requirements related to the above variables.
However, focus will only be given on a formal method. The reason being is that growing number
of interest of research has developed rapidly lately. Table I illustrates the thirty-five top ranking
wliversity which is currently actively involved in formal method research (Simas, 2001).

3 t



NORAINI MOHAMED ET AL.

Table 1: Top Ranking University Actively Involved in Formal Method Research

Name

Stanford University

Carnegie Melon University

University of Texas

University of Pensyllvania

University of California

Massachusettes Institute of Technology

University of North Carolina

State University of New York

Faculty Ranking

4 2

4 3

4 7

3 24

3 34

2

2 30

2 31

Formal Methods

In computer science and software engineering, formal methods are particular kind of
mathematically-based techniques for the specification, development and verification of software
and hardware systems (Butler, 2006). The use of formal methods for software and hardware
design is motivated by the expectation that, as in other engineering disciplines, performing
appropriate mathematical analyses can contribute to the reliability and robustness of a design
(Holloway, 1997).

Since formal methods use mathematical notations, the use of these methods might
strenghten the activities encompasses in SQA. Therefore, it may offer more accurate measures of
quality of the software. There are many aspects of SQA that may be benefited from formal
methods, such as in test specification, project estimation metrics, operational profiles and
reliability engineering, and formal specification styles as a basis for natural language
specification templates.

Formal methods can be used in all phases of a system's development and present an
opportunity to develop new techniques to improve software production. Formal methods used in
developing computer systems provide frameworks for specifying developing, and verifying
systems in a systematic marmer rather than ad hoc manner. System designers use formal methods
to specify desired behavioral and structural properties of a system (lglewski & Muldner, 1997).

Iglewski & Muldner (1997) added that one tangible product of applying a formal method is
a formal specification. The specification serves as a contract, a valuable piece of documentation,
and a means of communication between a client, a specifier, and an implementor. Formal
specifications have the additional advantage over informal specifications because they are
amenable to machine analysis and manipulation. The greatest benefit of applying a formal
method is that system designers gain a deeper understanding of the specified system, because
they have been forced to be more abstract and precise about the desired properties. Another
important application of formal specifications is that they can be used as a base to reason about
the behavior of system's components. For example, if predicate logic is used, then laws of this
logic can be used to reason. But it is not necessary to prove very properly or detail of a system;
indeed proving small things about core properties of the system may be invaluable in the future.

32



NORAINI MOHAMED ET At.

Formal Methods in System Development Life Cycle (SDLC)

For each system development phase, Iglewski & Muldner (I997) claimed that there are some
applications of formal specifications and the formal methods that support them might be
considered. Below are the applications of formal methods that can be applied in system
development life cycle:

• Requirements analysis: this step clarifies the informally stated requirements, helps clear
up vague ideas, reveals contradictions (or inconsistencies), ambiguities and
incompleteness;

• System design: this step is used during modular decomposition and refinement to record
design decisions and assumptions. A module interface specification provides its clients
with the information needed to use the module without knowledge of its
implementation. At the same time, it provides the implementor the information needed
to construct the modules without knowledge of its clients. The implementation can be
replaced by a more efficient one, without affecting the interface and the client's code;

• System verification: this is the process of showing that a system satisfies its
specification. This process is impossible without a formal specification. It is important
to realize that although the entire system may never be completely verified, a smaller,
critical piece often can be;

• System validation: formal methods can aid in system testing and debugging.
Specifications can be used to generate complete test cases;

• System documentation: a specification serves as a description of the system. It is used
for a communication between a client and a specifier, between a specifier and an
implementor, and among the implementation team;

• System analysis and evaluation: to learn from the experience of building a prototype
system, developers should perform a critical analysis of its functionality and
performance after this prototype has been built. Recently, significant research has been
carried out in specifying a system which is already built, running, and used. Some of
these exercises revealed serious bugs in published algorithms and designs.

Comparisons of Formal Methods

Table 2 shows the comparisons between some of the formal method techniques. As compared to
the other formal methods, Z language is chosen since it is the formal method that can be used at
the early stage in SDLC, which is in Software Requirement Specifications. Much software
developed failed to meet its reliability criteria because of the ambiguous specification of the
problem domain. The use of Z language in particular will help in removing the ambiguity of the
problem domain. This is because of the precise nature of the mathematical notation in used.
Furthermore the proving of the correctness of the software is made in the early stage in SDLC to
ensure the reliability of the software. This way a more reliable and cheaper cost is involved in
removing the errors at the end ofSDLC.

Conclusion and Further Works

As a suggestion to produce a more quality software in UiTM Pahang, the Z language
technique may be applied. For the existing software we may use a reverse-engineering technique

33



NORAINI MOHAMED ET AL.

to improve the software. Whereas, for the upcoming software, the use of Z language method is to
be used from the beginning. Another area that we think worth giving an attention is the use of Z
language technique on-a Web-Based Application since a number of software currently in use at
UiTM Pahang is operating on a Web.

Table 2: The Comparisons of Formal Methods Techniques

Techniques

Z language

B Method

Descriptions

Z is a formal specification language that was developed by Oxford University in
1977 (Wikipcdia, 2008). It was later being standardized in year 2002 (ISO/IEC
2002).

Z is based on the standard mathematical notation used in axiomatic set theory,
lambda calculus, and first-order predicate logic. Z notation is used for describing
and modeling computing systems. It is targeted at the clear specification of com
puter programmes and the formulation of proofs about the intended programmes
behavior.

B method is a tool-supported formal method based around AMN (Abstract Ma
chine Notation). B method has been used in major safety-critical system applica
tions in Europe such as the Paris Metro Line 14, and is attracting increasing
interest in industry (Wikipedia, 2008).

It has robust, commercially available tool support for specification, design and
proof and code generation. Compared to Z, B is slightly more low-level and
more focused on refinement to code rather than just formal specification.

Vienna Development The Vienna Development Method (VDM) developed by IBM's Vienna Labora
Met hod 0 log Y tory in the I970s is one of the longest-established formal methods for the devel-
(VDM) opment of computer-based systems (Dines & Jones, 1978).

Support for VDM includes commercial and academic tools for analyzing mod
els, including support for testing and proving properties of models and generat
ing program code from validated VDM models (Wikipedia, 2008).

Specification De
scription Language
(SDL)

Cleanroom Software
Development

Specification and Description Language (SDL) is a specification language tar
geted at the unambiguous specification and description of the behavior of reac
tive and distributed systems. Originally focused on telecommunication systems,
its current areas of application include process control and real-time applications
in general (Sommerville, 2007)

The Cleanroom Software Engineering process is a software development proc
ess intended to produce software with a certifiable level of reliability. The
Cleanroom process was originally developed by Harlan Mills and several of his
colleagues including Alan Hevner at IBM (Mills ct aI., 1987).

The focus of thc Cleanroom process is on defect prevention, rather than defect
removal. Cleanroom development makes use of the Box Structure Method to
specify and design a software product. Verification that the design correctly
implements the specification is performed through team review. Recent work on
the Cleanroom process has examined fusing Cleanroom with the automated
verification capabilities provided by specifications expressed in Communicating
Sequential Processes (CSP) (Broadfoot & Hopcroft, 2005)



NORAINI MOHAMED ET AL.

References

Boger, D.C., & Lyons N.R. (1984). The organization of the software quality assurance. ACM
Journal, 16(2).

Buckley, F.J. (l984). The IEEE software engineering standards process. ACM'84 Annual
Conference: The 5th Generation Challenge. Association of Computer Machinery.

Butler, R.W. (2006). What is Formal Methods? Retrieved November 20, 2008, from Langley
Formal Methods. http://shemesh.larc.nasa.gov./fm/fm-what.htrnl.

Cognence Inc. (2005). Are software quality problems costing your company? Denver: Cognence
Inc.

Fischer, K.F. (1978). Software Quality Assurance tools: Recent experience and future
requirements. Proceedings of the software quality assurance workshop on functional &
performance issues (pp. 116-121). Association Computer Machinery.

Galin, D. (2004). Software Quality Assurance: From theory to implementation. Great Britain:
Pearson Education Ltd.

Holloway C.M. (1997). Why engineers should consider Formal Methods? J6th Digital Avionics
Systems Conference. Wikimedia Foundation Inc.

Huges, B. & Cotterel, M. (2006). Software project management (4 th ed). United Kingdom: Mc
Graw Hill.

Iglewski, M. & Muldner, T. (1997). Comparison of formal specification methods and object
oriented paradigms. Journal ofNetwork Computer, 20 (4),355-377.

methods graduate research. Retrieved November 20, from http://chart2d.sourceforge.netljjsimas/
prof/ documents/undergradsGuideToFM.pdf.

Rosenblatt, S.c. (2001). System analysis and design (4th ed.) Boston: Thomson Course
Technology.

Simas,J .J. (2001). A synthesis of introductory infommtion for undergraduates considering formal
Vermaat, S.C. (2008). Discovering Computers: Fundamentals (4th ed.). Massachusetts:

Thomson Course Technology.
Wikipedia. (2008, November). Software Quality Assurance. Retrieved November 13, from

Wikipedia: The free encyclopedia http://en.wikipedia.org/wiki/software_quality-assurance

NORAINI BT. MOHAMED, MAHFUDZAH BT. OTHMAN & NURSYAHIDAH BT. ALIAS.
Faculty of Information Technology & Quantitative Sciences, Universiti Teknologi MARA
Pahang. noraini@pahang.uitrn.edu.my

35




