

UNIVERSITI TEKNOLOGI MARA

ACCURACY DETERMINATION FOR ATLAS-L BAND RT-PPP WITH VARIOUS SATELLITES POSITIONAL DATASETS

MOHAMAD HAFIZUDIN BIN MD SIDEK

Thesis submitted in fulfillment of requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

February 2022

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohamad Hafizudin Bin Md Sidek
Student I.D. No.	:	2019725373
		Bachelor of Surveying Science and
Programme	:	Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
		Accuracy Determination For Atlas-L Band
Thesis/Dissertation Title	:	RT-PPP With Various Satellites Positional
		Datasets
Signature of Student	:).J.

:	9 February 2022	

Date

ABSTRACT

Real-Time Precise Point Positioning, known as RT-PPP, has been widely used within the Global Navigation Satellite System (GNSS) community for some reasons, such as being very economical and easy to perform from anywhere. The position can be obtained in real-time using real-time GPS-accurate products provided by various international geodetic organisations. Depending on the Dilution of Precision (DOP) and prevailing atmospheric conditions, the drawback of RT-PPP techniques is the comparatively slow convergence time needed to obtain location accuracies of 10 cm or better. Nonetheless, if there is a signal outage in achieving these corrections, the reliability of RT-PPP will suffer a major decrease. This study aimed to evaluate positioning utilising Real-Time Precise Point Positioning (RT-PPP) would impact the accuracy of positioning system based on IHO standard with various combinations of satellites such as GPS, GLONASS, and BeiDou. The objectives were to assess the accuracy and identify the variable parameters that influence location accuracy while utilising Atlas with various satellite. To achieve the goal, a data-collecting observation is conducted out on the rooftop of Block A, UiTM Perlis, using a Hemisphere antenna and receiver. The data will then be evaluated and analysed to ascertain the extent to which Atlas acquired data using various satellite combinations such as GPS, GLONASS, and BeiDou. GPS was more accurate than others considering its lower standard deviation based on observation time by analysing the observed data. The number of satellites, HDOP, Northing, and Easting, were all checked for precision consistency during the observation period. The processed data will be assessed to verify if it complies with IHO standards.

TABLE OF CONTENT

Page

CONFIRMATION BY PANEL OF EXAMINERS	Ι
SUPERVISOR'S DECLARATION	II
ABSTRACT	III
ACKNOWLEDGEMENT	IV
TABLE OF CONTENT	V
LIST OF TABLES	IX
LIST OF FIGURES	Х
CHAPTER 1: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Aim and Objectives	4
1.4 Scope of Study	4
1.5 Significant of Research	4
CHAPTER 2 :LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Global Navigation Satellite System (GNSS)	5
2.3 Global Positioning System (GPS)	8
2.4 GLONASS	10
2.5 BeiDou Navigation Satellite (BDS)	10
2.6 Concept of DGNSS Erro	r! Bookmark not defined.
2.7 Concept of RT-PPP	12
2.8 Atlas L-band	14
2.9 International Hydrographic Organization (IF	10) 16

2.10 Descriptive Statistical Test	20
CHAPTER 3 : METHODOLOGY	21
3.1 Introduction	21
3.2 Flow Chart	21
3.3 Study Area	24
3.4 List of Software	25
3.4.1 Poketmax 4	25
3.4.2 Trimble Buissness Center	25
3.4.3 Hypack	26
3.4.4 IBM SPSS Statistic	26
3.5 Equipment Used	26
3.5.1 Trimble R6 GNSS Receiver	27
3.5.2 Hemisphere Antenna A43 and Receiver VS330	27
3.6 Data Result and Analysis	27
CHAPTER 4 : RESULT AND ANALYSIS	28
4.1 Introduction	28
4.2 To assess the constancy of location accuracy using multiple	
satellite combinations such as GPS, GLONASS, and BeiDou.	28
4.2.1 Observation for All Satellites	28
4.2.2 Observation for GPS Only	30
4.2.3 Observation for GLONASS Only	31
4.2.4 Observation for BeiDou Only	32
4.2.5 Various Satellites Descriptive Analysis	33
4.3 To identify the variable parameters that influence location accuracy	,
while utilising Atlas with GPS, GLOASS, and BeiDou satellites.	34
4.3.1 Correlations of Vector Displacement with Number of	
Satellites and HDOP for All Satellites	34
4.3.2 Correlations of Vector Displacement with Number of	
Satellites and HDOP for GPS Only VII	35