

UNIVERSITI TEKNOLOGI MARA

DETECTION OF AEROSOL OPTICAL DEPTH AND LOW-LEVEL CLOUD IN MODIS SATELLITE IMAGERY FOR POTENTIAL CLOUD SEEDING AREA

MUHAMAD AIMAN HAKIM BIN AFFANDY

Thesis submitted in fulfilment of requirements for the degree of **Bachelor of Surveying Science and Geomatics (Hons)**

Faculty of Architecture, Planning and Surveying

FEBRUARY 2022

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhamad Aiman Hakim Bin Affandy
Student I.D. No.	:	2019705047
		Bachelor of Surveying Science and
Programme	:	Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
		Detection of Aerosol Optical Depth and Low-
Thesis/Dissertation Title	:	Level Cloud in MODIS Satellite Imagery for
		Potential Cloud Seeding Area
		-
Signature of Student	:	AIMAN
Date		16 February 2022
Date	•	16 February 2022

ABSTRACT

Cloud seeding is conducted to preserve more water resources with the presence of aerosols in the atmosphere. Aerosol optical depth (A0D) is a key component in cloud formation and plays a vital role in the hydrological cycle and the atmosphere's radiation budget. Thus, the detection of AOD and suitable cloud is important to determine the most efficient for cloud seeding operation. This study aims to determine the potential area for cloud seeding based on the detection of aerosol optical depth concentration (AOD) and low-level clouds distribution using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images in the inter monsoon seasons year 2019 and 2020. The objectives of this study are to i) to identify the concentration of AOD over the study area ii) to retrieve the distribution of low-level clouds using the single reflective band method iii) to identify the potential cloud seeding area based on aerosol optical depth concentrations and distribution of low-level clouds. Based on the extractions from MODIS AOD with phyton scripts and the low-level cloud from MODIS single reflective band, the potential areas for clouds seeding were identified. The results show that the AOD focused on the urban areas while the distribution of low-level cloud uniformly at the area in Malaysia. Most of the cloud seeding potential areas were found within the same area of cloud seeding operations as carried out by the Malaysian Meteorological Department (MET) in the year 2019, which were near agriculture and dam areas. The potential areas in the year 2020 were also found within the same locations as 2019 such as Kwong Dam and Pasir Puteh in Kelantan. Thus, the AOD concentrations with the low-level cloud distributions can be utilized to identify the areas for cloud seeding operations. This study will be beneficial for MET to determine the most potential locations for successful cloud seeding operations.

TABLE OF CONTENT

	Page
CONFIRMATION BY PANEL OF EXAMINERS	i
AUTHOR'S DECLARATION	ii
SUPERVISOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS / NOMENCLATURE	Х

CHAPTER 1: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Question	4
1.4	Aim and Objectives	5
1.5	Scope and Limitation of Study	5
1.6	Significant of Research	6
1.7	Summary	6

CHAPTER 2 : LITERATURE REVIEW

2.1	Introduction	7
2.2	Formation of Rain	7
2.3	What are Aerosols?	8
2.4	Aerosol Optical Depth and Cloud Precipitation on Cloud Seeding	8
2.5	Cloud Detection from Satellites	9
2.6	Method of Cloud Seeding in Remote Sensing	9
2.7	Existing Data Used in previous research	10
2.8	Summary	12

CHAPTER 3 : METHODOLOGY

3.1	Introduction	13
3.2	Study Area	13
3.3	Research Methodology	15
3.4	Software Used	17

3.4.1	Python	17
3.4.2	ArcGIS	18
3.4.3	Microsoft Excel	18
3.4.4	ENVI	19
3.5	Data Acquisition	20
3.5.1	Aerosol Optical Depth Data from MODIS Imagery	20
3.5.2	Aerosol Optical Depth Data from AERONET Data	20
3.5.3	Cloud Properties Data from MODIS Imagery	21
3.6	Data Processing	22
3.6.1	Extraction of MODIS Aerosol Data Using Python Scripts	22
3.6.2	Correlation between MODIS Derived AOD and AERONET AOD Data	23
3.6.3	Cloud Detection Using Single Reflective Bands	24
3.7	Mapping the potential areas for cloud seeding operations based	27
	the distributions of AOD and low-level clouds	
3.8	Summary	28
CHAPTER 4: RESULT AND ANALYSIS		

4.1	Introduction	29
4.2	AOD Concentrations over Study Area	29
4.2.1	Maps of AOD Concentrations in Kedah, Kelantan and Sarawak	29
4.2.2	Validation of MODIS AOD with AERONET	33
4.3	Low-Level Cloud Extraction	36
4.4	Potential Area for Cloud Seeding Operation	40
4.4.1	Potential Area for Cloud Seeding Operation on 2019	40
4.4.2	Potential Area for Cloud Seeding Operation on 2020	51
CHAPTER 5: CONCLUSION		56

REFERENCES		58
5.2	Recommendation	57
5.1	Conclusion	56