Mec332/Mechanical Engineering Design





# FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA CAWANGAN JOHOR PASIR GUDANG (EM110)

# **MECHANICAL ENGINEERING DESIGN (MEC 332)**

### **PROJECT:**

## FINAL YEAR PROJECT REPORT ON CRANK WHEEL METAL CRUSHER (CWMK)

## **SUPERVISOR:**

## MADAM MAZLEENDA BINTI MAZNI

### **PREPARED BY:**

| NO | NAME                                   | STUDENT ID |
|----|----------------------------------------|------------|
| 1  | MUHAMMAD AFIF HAZIQ BIN AZMI           | 2018656172 |
| 2  | KHAIRUL NURLIYANA BINTI KHAIRUL SALLEH | 2018419994 |
| 3  | MOHD FIRDAUS BIN ALIMUDIN              | 2018658302 |
| 4  | MIZA FAIZAH BINTI ABDUL JAMMI          | 2018281312 |
| 5  | MUHAMMAD AFIQ BIN RUSMAN               | 2018240064 |

# PREPARED FOR: ENCIK NOOR HAFIZ

## **SUBMISSION DATE:**

# 21 JANUARY 2021

Note: Please submit this form to your FYP supervisor and return back to MEC332 lecturer for the record (In PDF format)



#### ACKNOWLEDGEMENT

Assalamualaikum w.b.t. Firstly we would like to thank Allah S.W.T because we finally completed this final year project for Mechanical Engineering Design (MEC332). The preparation of this project has been a truly collaborative effort between the group members, lecturers and fellow friends. I would like to express my special appreciation thanks to our supervisor, Madam Mazleenda Binti Mazni and everyone who has contributed in the Faculty of Mechanical Engineering, UiTM Pasir Gudang for their valuable and limitless guidance, encouragement and cooperation throughout this project progress. We also want to thank them because they gave us the opportunity to do this great project.

Secondly, we would like to thank all of our group members who had always been dedicated and contributed all of their time, ideas and energy in making this project successful and followed the timeline. Without every member's support, this final year project prototype and report is really impossible to complete.

Last but not least, we would also like to thank our parents and family members who also struggled to provide us any possible facilities and support with this project. All of them have been supportive to us in terms of finance, knowledge, prayers and also guidance to successfully finish our final year project. Finally, I would like to thank all my friends who help us in making this project.



### TABLE OF CONTENT

| CHAPTER | DESCRIPTION                                         | PAGE  |
|---------|-----------------------------------------------------|-------|
|         |                                                     |       |
| 1       | ACKNOWLEDGEMENT                                     | 2     |
|         |                                                     |       |
| 2       | INTRODUCTION                                        | 5     |
|         | <b>1.1 OVERVIEW OF THE PROJECT</b>                  | 6     |
|         | 1.2 DESIGN OBJECTIVE                                | 7     |
|         | <b>1.3 SCOPE OF PROJECT</b>                         | 8     |
|         | <b>1.4 SIGNIFICANCE OF THE PROJECT</b>              | 9     |
|         | 1.5 PROJECT PLANNING                                | 10    |
| 3       | PROBLEM DEFINITION                                  | 12    |
|         | 2.1 PROBLEM STATEMENT                               | 13    |
|         | 2.2 PROBLEM/NEED IDENTIFICATION                     | 14    |
|         | 2.3 CUSTOMER REQUIREMENT                            | 15    |
|         | 2.3.1 Targeted Market and Estimation of Market Size | 15    |
|         | 2.3.2 Customer Needs and Identification             | 15-19 |
|         | 2.4 PRODUCT DESIGN SPECIFICATION                    | 20-22 |
|         | LITERATURE REVIEW                                   | 23-25 |
|         |                                                     |       |
| 4       | CONCEPT GENERATION AND EVALUATION                   | 26    |
|         | 4.1 CONCEPT GENERATION                              | 27    |
|         | 4.1.1 Feasible Concepts                             | 27    |
|         | 4.1.2 Morphological Analysis                        | 27-29 |
|         | 4.1.3 Concept 1                                     | 30-31 |
|         | 4.1.4 Concept 2                                     | 32-33 |
|         | 4.1.5 Concept 3                                     | 34-35 |
|         | 4.1.6 Concept 4                                     | 36-37 |
|         | 4.1.7 Concept 5                                     | 38-39 |
|         | 4.2 CONCEPT EVALUATION                              | 40    |
|         | 4.2.1 Decision Criteria                             | 40    |

|   | 4.2.2 Pugh Chart                            | 41-43  |
|---|---------------------------------------------|--------|
|   | 4.2.3 Design for Environment                | 44     |
|   | 4.2.4 Design for Ergonomic and Human Factor | 45     |
|   | 4.2.5 Poka Yoke                             | 45     |
| 5 | EMBODIMENT OF DESIGN                        | 46     |
|   | 5.1.1 Product Architecture                  | 47     |
|   | 5.1.2 Layout (LO) Design                    | 47     |
|   | 5.2 CONFIGURATION DESIGN                    | 48     |
|   | 5.2.1 List of Parts                         | 48-49  |
|   | 5.2.2 Details Standard Parts Selection      | 50-51  |
|   | 5.3 PARAMETRIC DESIGN FOR CUSTOM PARTS      | 52-57  |
|   | 5.4 ENGINEERING CALCULATION                 | 58-59  |
|   | 5.5 ENGINEERING ANALYSIS                    | 60     |
| 6 | DETAIL DESIGN                               | 61     |
|   | 6.1 FINAL PRODUCT (3D)                      | 62     |
|   | 6.2 PART/MACHINE DRAWING                    | 63     |
|   | 6.3 EXPLODED VIEW                           | 71-72  |
|   | 6.4 BILL OF MATERIALS                       | 73     |
|   | 6.4.1 Costing Evaluation                    | 74     |
|   | 6.5 BREAK EVEN ANALYSIS                     | 75     |
| 7 | PROTOTYPING                                 | 76     |
|   | 7.1 MANUFACTURING DETAILS                   | 77     |
|   | 7.2 PRODUCT MANUAL                          | 79     |
|   | 7.3 PRODUCT TESTING                         | 82     |
|   | CONCLUSION AND RECOMMENDATIONS              | 83     |
|   | 8.1 CONCLUSION                              | 84     |
|   | 8.2 RECOMMENDATION FOR FUTURE WORK          | 85     |
|   | REFERENCES                                  | 86-88  |
|   | APPENDIX                                    | 89-101 |

Note: Please submit this form to your FYP supervisor and return back to MEC332 lecturer for the record (In PDF format)



#### **1.1 OVERVIEW OF THE PROJECT**

Due to the pandemic that is still happening, most people become more passive because they are not being able to go outside to do any physical activities. According to The Star News [1], it says that many Malaysians have been complaining about their weight gain during the movement control order (MCO) period, which was not a surprise considering that they were homebound andless active physically. This problem will affect someone's lifestyle and cause an increase in rising body weight. There are so many alternatives that can be introduced in order to combat the problem. To prevent this unhealthy lifestyle and boredom from continuing the group has come up with a great idea, which we named it as a "Crank Wheel Metal Crusher" that works by crushing metal elements such as aluminum can. This project is renewed from the existing project by adding somegood mechanisms that will lead people to have healthy and joyful lifestyles while keeping the earthhealth by lessening the waste. According to Better Health Channel [2], riding a bicycle is one of the best ways to reduce risk of health problems. Cycling is a healthy low-impact exercise that can enjoyed by people of all ages. Better Health Channel also says that cycling is good muscle workout, good for stamina and for strength. Because of that, our group decided to combine a cycling mechanism with the metal crusher. This will help people to have a healthy lifestyle withoutdoing outdoors activity due to the movement control order.

Note: Please submit this form to your FYP supervisor and return back to MEC332 lecturer for the record (In PDF format)