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INVESTIGATING THE EFFECT OF DIFFERENT SAMPLING METHODS ON 

IMBALANCED DATASETS USING BANKRUPTCY PREDICTION MODEL 

Amirah Hazwani Abdul Rahim1 , Nurazlina Abdul Rashid2 , Abd-Razak Ahmad3 and Norin Rahayu 

Shamsuddin4 
1,2,3,4Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM) Kedah Branch, 

08400 Merbok, Kedah, Malaysia 

(1amirah017@uitm.edu.my,2azlina150@uitm.edu.my, 3ara@uitm.edu.my, 4norinrahayu@uitm.edu.my) 

 

Abstract. Most classifiers of bankruptcy studies encounter less difficulty when dealing with a balanced 

non-bankrupt and bankrupt data set. The classifiers evaluate performance of the model through the 

accuracy rate. However, accuracy rate is not an appropriate measurement when dealing with imbalanced 

distribution of the data set. Sensitivity and precision were used instead to measure the performance of the 

classifier. This study employed three sampling strategies to deal with imbalanced datasets: oversampling, 

undersampling, and SMOTE (Synthetic Minority Oversampling Technique). The intent of this research is 

to examine how different sampling methods impact the performance of a bankruptcy prediction model 

utilising highly imbalanced real data. SMEs in the storage and transportation business were the subject of 

the research. The sample size is 9190 firms with 0.084% bankrupt firms and 99.16% non-bankrupt firms. 

As a classifier, Partial Least Square-Discriminant Analysis (PLS-DA) was selected. The findings suggest 

that employing Partial Least Square-Discriminant Analysis, SMOTE increases the classification 

probability for an imbalanced dataset. In the meantime, neither oversampling nor undersampling 

improved the results of the Partial Least Square-Discriminant Analysis. 

 Keywords- Partial Least Square-Discriminant Analysis, SMOTE, Oversampling, Undersampling, 

Imbalanced data 

1. Introduction 

           The earliest study on financial distress prediction (FDP) begins with Beaver (1966) who used the 

univariate prediction model to show the significance of certain financial ratios in classifying bankrupt 

firms. Altman (1968) adopts multiple discriminant analysis (MDA) to build a multivariate model for FDP 

containing five financial measures as variables. The Z-score model is the product of the study. The Z-

Score model, developed by Altman, is an analytical indicator that predict whether a firm will go insolvent 

in the following two years. Ohlson (1980) and Zmijewski (1984) utilised the Logit and Probit models, 

respectively, to get beyond the constraints of univariate investigation and MDA models. Kovacova and 

Kliestik (2017) found that a model based on logit functions slightly outperforms a probit model in terms 

of classification accuracy.  

 

In the actual world of bankruptcy prediction, the proportion of bankrupt companies to non-

bankrupt companies is not equal. It might be as minimal as 1 to 100 or as higher as 1 to 1000 

(Veganzones and Séverin, 2018). The unsatisfactory efficiency of traditional classifiers, which algorithms 

are exclusively intended for balanced instances, has piqued curiosity in finding a solution to the issue of 

imbalanced datasets (Jia et al., 2014). The quantity of insolvent companies is much fewer than the total of 

companies that are not destitute, according to Zoriák et al. (2019). This aspect, however, is routinely 

overlooked in many articles, and balanced data is taken into account. Undoubtedly, bankruptcy prediction 

should consider this imbalance into account in hopes of avoiding type I and II faults, in which a company 

that is not bankrupt is rated as bankrupt, and vice versa. 
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 Only some few research on the imbalance issue in bankruptcy prediction have been done 

eventhough the issues on imbalanced dataset has gained interest among researchers. Wilson and Sharda 

(1994), for contrast, compared neural networks with multivariate discriminant analysis using a resampling 

methodological framework, indicating that neural networks surpassed discriminant analysis in forecasting 

both non-bankrupt and bankrupt companies. In order to cope with the problem of an imbalance dataset, 

Japkowicz (2000) employed two resampling techniques: oversampling the minority class and downsizing 

the majority class. Since it only utilises a fraction of the majority class and is thus highly efficient, 

random under-sampling is a common approach for coping with class-imbalance concerns. Both 

oversampling the minority and downsizing and the majority were successful. 

 

In another study, Zhou et al. (2012) examined the performance of more than 20 models for 

bankruptcy prediction using paired samples. In a prior work, Garcia et al. (2012) examined at the impact 

of the imbalance proportion and the classifier on the efficiency of four resampling techniques. When data 

sets are highly imbalanced, over-sampling of the minority class significantly outperforms over-sampling 

of the majority class, according to this study. On an actual heavily imbalanced dataset, Zhou (2013) 

investigated the productivity of an insolvency forecasting model utilising seven sampling 

approaches and five quantitative models. Model performance varies depending on the sampling 

methods used, however SVM can perform well in most situations. 

 

Lin et al. (2017) apply two undersampling techniques to address the imbalance data sets as well 

as determine that undersampling the cluster centres' nearest neighbours is the best choice. Veganzones 

and Séverin (2018) explored different degree of imbalanced distributions through to recover from the loss 

of performance random oversampling, random undersampling, the synthetic minority oversampling 

technique (SMOTE), and EasyEnsemble. The outcome shows of their study shows that all the sampling 

technique achieve similar results on the recovery of performance loss.  Nurazlina et al. (2017) conducted 

a study on  PLS and logistic models for bankruptcy prediction model and found that the accuracy rate is 

close for both models. As a result, we would want to expand on the previous research by examining the 

impact of multiple sampling techniques on the success of bankruptcy prediction models and comparing 

the results of many frequently employed bankruptcy prediction models in this investigation. 

 

2. Methodologies  

2.1 Bankruptcy Data 

The dataset is collected from Suruhanjaya Community Malaysia's Small and Medium Enterprises (SMEs) 

(SSM) from year 1999 to 2012. The data consists of 9113 non-failed and 77 failed Malaysian SMEs in the 

transportation and storage industry. SMEs are made up of variety of industries. This study solely looked 

at SMEs in the transportation and storage industry. As independent factors, financial ratios are employed. 

In the literary works, a wide variety of financial ratios were used to predict bankruptcy. Table 1 illustrates 

the financial ratios that were employed in this investigation. 
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Table 1: Financial Ratios 

 

Label 

 

Financial Ratio 

 

Details 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

F10 

F11 

F12 

F13 

F14 

F15 

F16 

F17 

F18 

F19 

F20 

F21 

F22 

F23 
 

NI/TA 

CA/CL 

TL/TA 

WC/TA 

TL/TE 

S/TA 

CA/S 

CA/TA 

NI/S 

NI/TE 

TE/TA 

WC/S 

S/FA 

TE/TL 

FA/TA 

FA/TE 

LTL/TA 

CL/TA 

CL/TE 

EBT/TA 

LTL/TE 

S/TE 

TE/LTL 
 

Net Income/Total Assets 

Current Assets/Current Liabilities 

Total Liabilities/Total Assets 

Working Capital/Total Assets 

Total Liabilities/Total Equity 

Sales/Total Assets 

Current Assets/Sales 

Current Assets/Total Assets 

Net Income/Sales 

Net Income/Total Equity 

Total Equity/Total Assets 

Working Capital/Sales 

Sales/Fix Assets 

Total Equity/Total Liabilities 

Fix Assets/Total Assets 

Fix Assets/Total Equity 

Long-Term Liabilities/Total Assets 

Current Liabilities/Total Assets 

Current Liabilities/Total Equity 

Earnings Before Taxes/Total Assets 

Long-Term Liabilities/Total Equity 

Sales/Total Equity 

Total Equity/Long-Term Liabilities 
 

 

2.2 Sampling strategies  

The ‘Imbalanced’ package in R programming is used to analyze the sampling strategy. This study choose 

the common sampling technique which are random undersampling, random oversampling and SMOTE 

for imbalanced data. To achieve the balance that yields the equivalent result, random undersampling was 

used to eliminate the majority class. Oversampling, on the contrary, duplicates the minority class to attain 

the similar balance. SMOTE over-samples the minority class by producing synthetic minority instances in 

the vicinity of observed instances. The objective is to interpolate between examples of the same class to 

form new minority examples. 
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2.3 Performance Measures 

The accuracy rate (Acc), sensitivity (Sen), specificity (Spec), and precision rate (Pre) are the four 

performance measures of the model. 

Table 2: Confusion Matrix 

Actual Class 

Predicted 

Positive (Bankrupt) Negative(Non-Bankrupt) 

Positive (Bankrupt) True Positive (TP) False Negative (FN) 

Negative(Non-Bankrupt) False Positive (FP) True Negative (TN) 

 

The accompanying estimations are drawn on Table 2 

1. Sensitivity = 
FNTP

TP

+
                                                   

2. Specificity =
FPTN

TN

+
  

3.    Accuracy Rate =
FNFPTNTP

TNTP

+++

+
                                 

4.     Precision Rate = 
FPTP

TP

+
 

3. Results 

Training and testing samples were split from the main dataset. Table 3 shows that the original dataset in 

training for non- bankrupt and bankrupt cases is 5137 and 53 respectively. It indicates that the data was 

severely imbalanced. Following sampling, the minority to majority case class distribution for 

undersampling is 53:53, for oversampling it is 5137:5137, and for SMOTE it is 3975: 2703. 

Table 3: Sampling method for imbalanced data 

Sampling Methods 

Training Testing 

Non-bankrupt Bankrupt Non-bankrupt Bankrupt 

0 1 0 1 

Original 5137 53 3976 24 

SMOTE 3975 2703 3976 24 

Undersampling 53 53 3976 24 

Oversampling 5137 5137 3976 24 
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Table 4: Cross Validation for sampling methods 

 

Sampling 

Methods Actual Class 

Predicted (Training) Predicted (Testing) 

Positive  

(Bankrupt) 

Negative 

(Non-Bankrupt) 

Positive  

(Bankrupt) 

Negative 

(Non-Bankrupt) 

Original 

Positive 

(Bankrupt) 0 53 0 24 

Negative 

(Non-Bankrupt) 0 5137 0 3976 

SMOTE 

Positive 

(Bankrupt) 751 1952 6 18 

Negative 

(Non-Bankrupt) 321 3654 278 3698 

Undersampling 

Positive 

(Bankrupt) 32 21 11 13 

Negative 

(Non-Bankrupt) 17 36 1369 2607 

Oversampling 

Positive 

(Bankrupt) 2104 3033 7 17 

Negative 

(Non-Bankrupt) 812 4325 574 3402 

 

Table 4 shows a cross validation for sampling methods using Partial Least Square Discriminant Analysis 

(PLS-DA) as a classifier. The result shows that for original sampling method positive and false positive 

are zero. 

Table 5: Performance Measures 

 

 

Sampling 

Methods 

 

Training 

 

Testing 

 

Sensitivit

y 

 

Specificity 

 

Accurac

y Rate 

 

Precisio

n Rate 

 

Sensitivit

y 

 

Specificity 

 

Accuracy 

Rate 

 

Precisio

n Rate 

 

Original 

 

0.00 

 

100.00 

 

98.98 

 

0.00 

 

0.00 

 

100.00 

 

99.40 

 

0.00 

 

SMOTE 

 

27.78 

 

91.92 

 

65.96 

 

70.01 

 

25.00 

 

93.00 

 

92.60 

 

2.11 

 

Undersamp

ling 

 

60.37 

 

67.92 

 

 

64.15 

 

65.31 

 

45.83 

 

65.57 

 

65.45 

 

0.80 

 

Oversampl

ing 

 

40.96 

 

84.19 

 

62.58 

 

72.15 

 

29.17 

 

85.56 

 

85.23 

 

1.20 
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Table 5 demonstrates how different sampling techniques impact the bankruptcy prediction model's 

performance. As expected, the classifier is biased, with a high specificity (100%) and a sensitivity of 0%. 

As per the findings for SMOTE, undersampling, and oversampling, the trial set's sensitivity has risen to 

25.0%, 29.17%, and 45.83%, respectively. Sensitivity, precision rate and accuracy rate of SMOTE 

sampling are better than oversampling and undersampling. 

4. Conclusion and Discussion 

In this experiment, we look at the impact of three different sampling methods on the categorization of an 

imbalanced dataset: undersampling, oversampling, and SMOTE sampling. SMOTE improves 

classification for imbalanced datasets by using Partial Least Square-Discriminant Analysis as a classifier, 

according to the findings of this study. Meanwhile, Oversampling and Undersampling did not improve 

the Partial Least Square-Discriminant Analysis performance. 
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