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WATER DEMAND PREDICTION USING MACHINE LEARNING: A REVIEW

Norashikin Nasaruddin1, Shahida Farhan Zakaria2, Afida Ahmad3, Ahmad Zia Ul-Saufie4

and Norazian Mohamaed Noor5

1,2,3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Kedah Branch),
08400 Merbok, Kedah, Malaysia. 4 Faculty of Computer and Mathematical Sciences, Universiti
Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia, 5 Sustainable Environment Research

Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti
Malaysia Perlis, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia

(1 norashikin116@uitm.edu.my, 2 shahidafarhan@uitm.edu.my, 3 afidaahmad@uitm.edu.my,
4 ahmadzia101@uitm.edu.my, 5 norazian@unimap.edu.my)

Water is important and critical sources of life. Even though some countries enjoy tropical weather
year-round with plenty of water resources like Malaysia, they are still facing scarcity issue. Water
demand is influenced by various factors such as population, climate change and water utilization. This
study reviews 45 Scopus articles from year 2015 to 2021 on predicting water demand using Machine
Learning (ML) methods which include: neural network, random forest, decision tree, and hybrid
optimisation models. The summary of ML methods on the evaluation of their performance in water
demand prediction is identified by a comprehensive analysis of the literature. The narrative search
of the most relevant literature is classified according to method, prediction type, prediction variables
and accuracy rate. The review identified several machine learning methods that are commonly used
which include decision tree, neural network, random forest and hybrid method. In conclusion, the
study reports that the accuracy of the method varies according to types of prediction variables used.

Keywords: Water demand, Machine learning, Neural network, Decision tree

1. Introduction

Water is one of the important element and a critical source of life. With the growing of population as
well as higher standard of living, the demand of water in daily use has also increased (Ali et al., 2014).
However, some countries are still facing some problems with water scarcity issues even though they
enjoy tropical weather year-round with plenty of water resources. Water demand is influenced by
various factors such as population, climate change and water utilization (Ali et al., 2014).

Forecasting water demand with higher accuracy is useful to various parties for effective long-
term planning in order to manage water systems efficiently and accommodating the increase in water
demand. There are many uncertainties in predicting water demand and some of the challenges
evolve from the relationship between human and natural systems in urban environments (House-
Peters and Chang, 2011). Traditional methods such as time series and regression model were firstly
used in forecasting water demand, however, the approaches have less accuracy (Zubaidi et al., 2020c).
Recently, machine learning methods which include random forest, neural network, and support vector
machine has been widely employed in the prediction of water demand.

There are limited studies done in Malaysia regarding water demand forecasting especially using
machine learning method. Ali et al. (2014) and Mohd Firdaus and Talib (2016) investigated the
pattern of water supply and demand in Langat catchment and Selangor area using Water Evaluation
and Planning (WEAP) System. The Stockholm Environment Institute (SEI) created WEAP, a unique
water resources and planning software that stimulates hydrologic patterns based on climatic input.
This is a critical tool for informing society about climate change adaptation and policy making.
WEAP also allows users to create scenarios using assumptions about water demand, infrastructure,
and regulation, such as an increase in temperature or heavier rainfall. WEAP can combine all human
activities in order to predict water shortages and water quality based on a model scenario. The
latest study by Anang et al. (2019) used the pooled Ordinary Least Squares (OLS) to determine
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the availability of water resources for 13 states in Malaysia. The pooling technique used compared
changes in cross-sectional units to changes in individual units over time. It allows for more complex
analysis than either cross-section or time series analysis alone. Furthermore, pooled regression uses
pooled data sets to handle a larger number of data points.

This study reviews the current studies on the prediction of water demand. The review covers the
application of ML methods (including optimization and hybrid models) and the discussions on the
evaluation of their performance in water demand prediction. Narrative reviews of relevant literatures
are classified according to method, prediction type, prediction variables and accuracy rate. The
discussion and the conclusion of the reviews are presented in the last section of this paper.

2. Research Methodology

The SCOPUS online database has been assessed to identify the related documents on water demand
forecasting using ML approaches. The database had been explored by using the advanced document
search with keyword: (TITLE-ABS-KEY ( "water demand" ) AND TITLE-ABS-KEY ( "machine
learning" OR "Deep learning" OR "ANN" OR "MLP" OR "ELM" OR "neural network" OR "ANFIS"
OR "decision tree" )).

Figure 1: The number of SCOPUS publication in water demand prediction using Machine Learning approaches.

Figure 1 represents the number of SCOPUS publications in water demand prediction using ML
approaches since 2006. The database shows an increment in the number of manuscripts published
from year to year. In this paper, 46 relevant papers issued from 2015 to 2021 are reviewed. The
revised papers are then categorised based on the ML model used which are Neural Network, Decision
Tree, Random Forest, Hybrid, and Optimization models as illustrated in Section 3.

3. Machine Learning Models

The ML models presented in this paper include: 17 Artificial Neural Network, 9 Decision Tree, 4
Random Forest, 15 Hybrid and Optimisation. The review takes into consideration of the year the
papers were published, the prediction variables and prediction type used in water demand analysis,
the region in which the data were taken from, and lastly, the accuracy rate of the ML models chosen.

3.1 Artificial Neural-Network (ANN)

ANN is a computing system design that resembles the way human brain works where it takes the
preceding examples into consideration to create a system of neuron hence makes a new decision. In
modelling complex data pattern, ANN model is more practical and precise as the technique involved
non-linear applications. ANN has been broadly used in various areas especially in prediction and
classification. The extensive reviews of water demand forecasting using ANN is as in Table 1.
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Table 1: Papers Review on Water Demand Analysis using ANN model.

References Prediction Variable Prediction Type Region Accuracy Rate

Carvalho et al. (2021) Water demand N/A Fortaleza,
Brazil

N/A

Xenochristou et al.
(2020)

Water demand 1-7 days into
the future

Southwest
of England

MAPE = 3.2%− 17%, for a
reduction in group size from
600 to 5 households.

Sidhu et al. (2020) Crop water demand Daily Karnal in
Haryana,
India

Average accuracy rate of
71%

Xenochristou and
Kapelan (2020)

Water demand Daily Southwest
of England

R2 = 74.1%

Pesantez et al. (2020) Water demand Hourly Cary, North
Carolina,
USA

Median RMSE
= 9.5− 16 gph of water

Ibrahim et al. (2020) Water demand Daily Kuwait Support Vector Linear
Regression MAPE = 0.52,
RMSE = 2.59, ARIMA
MAPE = 1.8, RMSE = 9.4

Chen et al. (2020) Evapotranspiration for
cabbage farmland

Daily Hunan
Province

R2 = 0.78− 0.81

Smolak et al. (2020) Short-term water
demand

24hours
forecast
Weekly
forecast

Wroclaw,
Poland

MAPE = 90.4%

Rahim et al. (2020) N/A N/A N/A N/A

Lee and Derrible
(2020)

Water Demand Daily USA R2
adj = 0.60

Mouatadid et al.
(2019)

Water irrigation flow Daily Palos de la
Frontera

Wavelet-bootstrap using
ANN: R2 = 0.9432,
Bootstrap using Machine
Learning: R2 = 0.9190

Vonk et al. (2019) Climate change and
vacation absence

Yearly, daily Netherlands
and
Belgium

The average demand
increased between −0.2%
and +3.1%,
The peaking factor increased
between −2.9% and 21.3%.

Duerr et al. (2018) Portable water billing
records water usage
data from TBW

Short term,
Long term

Tampa
Bay Water,
Florida
(Hills-
borough,
Pasco, and
Pinellas)

N/A

Candelieri (2017) Water demand Hourly Milan N/A

An et al. (2015) Building water demand Area
Precipitation
per Demand
Ratio (APDR)

Hong Kong N/A

Safavi et al. (2015) Baseline scenario Annually Iran N/A

Liu et al. (2015) Urban water use Yearly China NSE = 0.87
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3.2 Decision Tree

Decision tree uses supervised machine learning algorithms where the data analysis technique divides
the data into many possible entities related to a given parameter. A decision tree has two main compo-
nents which are nodes and leaves. The supervised learning approach analyses an item’s observation
in the branches to determine the item’s goal value in the leaves. The leaves reflect the results, whereas
the decision nodes represent the data splitting. One of the benefits of decision trees is that their outputs
are simple to read and analyze without the need for statistical expertise. However, the main problem
of the decision tree is generally leading to overfitting of the data which ultimately leads to wrong
predictions. The summary of water demand studies using decision trees are as in Table 2.

Table 2: Papers Review on Water Demand Analysis using Decision Tree model.

References Prediction Variable Prediction Type Region Accuracy Rate

Ahcene and Saadia
(2019)

hourly water request Hourly Rassauta,
Algeria

R = 0.95

Oyebode (2019) weather and
socioeconomic
variations

N/A City of
Ekurhuleni,
South
Africa

Pearson correlation-based
ANN model produced the
highest R2 and NSE values
at 0.9233 and 0.9001

Shah et al. (2018a) temperature, rainfall,
snow, snow depth,
number of customers,
median income,
holidays and day of
the year

Daily and
monthly

Indiana,
USA

mMLR = −12.73%,
mFFNN = −6.45%,
mMRNN = −3.84%

Yin et al. (2018) total population, urban
population, and the
primary, secondary,
and tertiary industry
gross domestic product,
annual precipitation

Yearly Wuxi City,
China

Mean relative error: ANN
= −2.14%,
MLR = −3.96%

Shah et al. (2018b) Weather conditions Daily Indiana Average error 2.31% and
1.90% with
threshold values of 10% and
5%

Shabani et al. (2018) Water demand short term Milan, Italy R2 = 0.95 and 0.93 for
training and testing data set

Farias et al. (2018) RBF-ANN Drinking
water demand

Hourly, daily,
weekly

Barcelona RMS = 0.0559

Loureiro et al. (2016) Water demand Daily Portugal Relative error,
= 7%− 21%

Ji et al. (2016) Water supply operation Monthly China 83%

3.3 Random Forest

Random forest is made up of huge number of individual decision trees that work together as an
ensemble. Each tree in the random forest produces a class prediction and the class with the most
votes becomes the prediction model. Its popularity is due to its ease of use and adaptability as it can
handle both classification and regression problems. Besides, it reduces overfitting in decision trees
and helps to improve the accuracy. However, Random Forest creates a lot of trees and combines their
output. In order to do so, this algorithm requires much more computational power and resources. The
summary of water demand studies using random forest are presented in Table 3.
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Table 3: Papers Review on Water Demand Analysis using Random Forest Model.

References Prediction Variable Prediction Type Region Accuracy Rate

Villarin and
Rodriguez-Galiano
(2019)

Domestic water
consumption per capita

N/A Seville,
Andalusia

RMSE = 22.06
L/day/inhabitant, R2 = 0.46

Park and Lee (2019) daily usage of water
per person, water price,
population, and the
information of the water
source

Seasonal Korea N/A

Tulbure et al. (2016b) Surface water dynamics Long term
trends

Australia 99.9%(0.02% standard
error) with 87%(3%) and
96%(2%)

Tulbure et al. (2016a) Surface water (SW) Yearly Australia 99.94%

3.4 Hybrid and Optimization

Hybrid model is a method to overcome the weakness of an original approach by combining two or
more techniques. This model works significantly more efficient and has better predictive performance.
Optimization approache is a process of modifying the hyperparameters. The aims of optimization
algorithm are to identify the best parameter values under various conditions. This method has been
used to solve problems in numerous applications domains. Table 4 presented the reviews on hybrid
and optimization methodologies for prediction of water demand.

Table 4: Papers Review on Water Demand Analysis using Hybrid and Optimization models.

References Prediction Variable Prediction Type Region Accuracy Rate

Pandey et al. (2021) Water demand Hourly and
monthly

Spanish and
India

Spanish RMSE = 11.67%−
62.38%, Indian RMSE =
52.19%− 70.12%

Zubaidi et al. (2020a) Urban water demand Monthly Southeast
Water
Utility in
Melbourne

R2 = 0.9

Zubaidi et al. (2020b) Municipal water
demand

Monthly Melbourne
City

ANFIS CE = 0.974, CSA-
ANN CE = 0.971

Zubaidi et al. (2020d) Long-term Municipal
Water Demands

Monthly Australia,
Greater
Melbourne,
Victoria,

R2 = 0.96,
RMSE = 0.0025

Zubaidi et al. (2020c) Urban water demand Monthly Gauteng
Province,
South
Africa

BSA – ANN:
RMSE = 0.0099 M`, CE
= 0.979

Kazemi et al. (2020) Water resources
allocation

Monthly North of
Iran

R2 = 0.78 − 0.9, RMSE
= 2.35− 4.26

Peng et al. (2019) growth period of
crops, irrigation values
(light intensity, soil
moisture, soil electrical
conductivity, and air
temperature)

Long term China R = 0.98963,
Mean Square Error (MSE)
= 0.00857724

Zhang et al. (2016) Water demand Annually China RMSE = 42.8%,
MAE = 7.6%
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Hou et al. (2016) Water demand Annually China N/A

Safavi and Enteshari
(2016)

Water extraction
quantities

Monthly Iran R2 = 0.86− 0.99

Abdullah et al.
(2015)

Evapotranspiration (ET) Daily Iraq R2 = 0.982

Tiwari and
Adamowski (2015)

Water demand Weekly and
monthly

Canada R2 = 0.70− 0.85

Rahmani and
Zarghami (2015)

Water resources
management

Monthly time
scale

Iran R2 = 0.82− 0.98

Perea et al. (2015) Irrigation water demand Daily Spain R2 = 0.93

Tiwari and
Adamowski (2017)

Water demand Daily Canada R2 = 0.78− 0.92

4. Discussion

This study has reviewed papers on water demand using machine learning from 2015 to 2021. It
is found that, most of the studies focus on short-term demand forecasting and very few studies
address medium and long-term forecasting. An extensive literature review revealed that the most
used machine learning method to predict water demand was Artificial Neural Network. Finding the
best method that can provide the best results can be a difficult task because it depends on the predictive
variables included and data that the studies used.

The accuracy of the predictive models was evaluated using variety of methods including accuracy
rate, R2 and error rate such as RMSE and MAPE. The comparative assessment of the prediction
models showed that the hybrid and optimized methods can be considered as the best assessment to
predict future water demands.

5. Conclusion

In the previous six years, the adoption of machine learning models has increased. The reviewed found
that the most machine learning method used is Artificial Neural network, Support Vector Machine,
Random Forest and Decision Tree. According to the study, the method’s accuracy varies based on
the type of prediction variables applied. In addition, the use of hybrids and optimization methods has
risen considerably in recent years. The researchers have proven that hybrid and optimization models
can improve accuracy and efficiency of the models. The research’s next step is to create hybrid and
optimization models with improved accuracy.
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