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Peninsular Malaysia's climate is directly affected by wind from the mainland, being hot and humid 

throughout the year, it is categorized as equatorial due to its location near to the equator. This study 

employed the cluster analysis and regional frequency analysis based on L-moments to investigate the 

areas represented by data obtained from 32 measuring stations and TRMM. The study of the region, 

which is homogeneous in terms of L-moment ratios, defined the definition of homogeneous regions 

and identified the regional distribution and the identification of the best distribution based on L-

Moment Ratio Diagram (LMRD) and goodness-of-fit criterion. The results show that, for observation 

data, GLO was the most appropriate probability distribution for Region I, GNO for Region II, GEV 

for Region III, and GPA for Region IV. Meanwhile, for satellite data, the distribution functions were 

GPA for Region I, GEV for Region II, GLO for Region III, and the selected distribution for Region 

IV was GEV. The regional estimation based on Monte Carlo simulation, producing reliable rainfall 

quantiles were performed and the estimation of the quantiles, GNO, GEV, and GPA distributions 

gave approximately similar quantile estimates until 50 years return period. Results suggested that the  

estimation of extreme precipitation at ungauged sites with no flow data has become a real problem 

for scientists and hydrologists. 

Keywords: Ward's method, homogeneous Region, L-moments, regional frequency analysis 

 

1. Introduction 
 

Planning and designing water resources projects and extreme rainfall management depend 

on the hydrology estimation of extreme events practical application. The design of hydraulic 

structures as flood protection, storm sewer networks, and engineering in many applications requires 

the frequency precipitation quantiles knowledge. When there is no local data available at a site of 

interest or when the data is insufficient for a credible calculation of rainfall quantiles during the 

critical return period, Regional Frequency Analysis (RFA) is used. The specification of the 

homogeneous region, the derivation of appropriate probability density functions (or frequency 

curves) of the observed data, and the building of a regional frequency model are the three key 

components of the analysis (i.e., a relationship between precipitation of different return periods, 

precipitation characteristics, and climatic data). The research covers identifying homogenous regions 

based on site attributes cluster analysis, identifying appropriate regional frequency distributions, and 

developing a regional frequency model for Peninsular Malaysia. To account for records of short time 

series at an individual site, a regional method to frequency analysis substitutes space for time by 

employing estimates from numerous sites in the region. The research covers identifying homogenous 

regions based on site attributes cluster analysis, identifying appropriate regional frequency 

distributions, and developing a regional frequency model for Peninsular Malaysia. To account for 

records of short time series at an individual site, a regional method to frequency analysis substitutes 

space for time by employing estimates from numerous sites in the region. Dalrymple (1960) proposed 

the regional frequency analysis to estimate quantiles of the underlying variable at each site in the 

homogenous region of consideration, "trading space for time" by using data from nearby or similar 

sites. The quantiles calculated using the regional sample are more precise (J. Hosking & Wallis, 

1997). 

Regional frequency analysis has become a commonly used hydrological instrument 

(Adamowski, 2000; Gottschalk & Krasovskaia, 2002; Kjeldsen & Rosbjerg, 2002; Pilon & 
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Adamowski, 1992). It is also common in climatological studies (Fowler & Kilsby, 2003; Guttman et 

al., 1993; Naghavi & Yu, 1995; Smithers & Schulze, 2001). As noted above, it uses information from 

several measurement sites to estimate probability distributions at any given location. Other studies 

used the marginal distribution of severity and duration of drought by implementing regionalization 

to site frequency, with few exceptions by Mirakbari et al. (2010); Sadri & Burn (2014); Zhang et al. 

(2015), which used the L-moments in the regional frequency approach to identify marginal 

distributions. When data from regions is insufficient, the regional frequency analysis is more 

successful than the site frequency analysis in examining marginal distributions. It provides 

information from neighbouring homogenous sites to help the site's data deficiency (J. R. M. Hosking 

& Wallis, 1997; Jingyi & Hall, 2004). When data from regions is insufficient, the regional frequency 

analysis is more successful than the site frequency analysis in examining marginal distributions. It 

provides information from neighbouring homogenous sites to help the site's data deficiency (J. R. M. 

Hosking & Wallis, 1997; Jingyi & Hall, 2004). Besides, by identifying regions with similar drought 

behaviors (Goyal & Sharma, 2016), the regional analysis helps describe and comprehend spatial 

precipitation coverage effectively. East Asia is predicted to be one of the most vulnerable areas under 

global warming to the potential rise in weather and climate extremes (IPCC 2012). Several studies 

have recently been done at severe summer climates in East Asia using observations and different 

climate models (Boo et al., 2006; Griffiths et al., 2005; Ho et al., 2011; Im et al., 2008; Kusunoki & 

Arakawa, n.d.; Oh et al., 2013; Suh et al., 2012). Ahmad et al. (2017) conducted research on 10 days 

low flow series on 9 sites of Indus basin with the regional frequency analysis. Meanwhile Kar et al. 

(2017) investigated the use of L-moments approach for hourly regional rainfall frequency estimation 

in Jeju Island, Korea. Mortuza et al. used regional frequency analysis in the evaluation of bivariate 

drought characteristics in Bangladesh in 2018 to assess both past and prospective drought duration 

and severity. Thus in 2019, Parchure identified homogeneous rainfall regions using a combination of 

cluster analysis and the L-moments approach for Mumbai City, India. The economic impacts of 

extreme climatic events including sea-level rise and storm surge risk and the benefits of the 

adaptation strategies in the Pearl River Delta, a lowing-lying area located in southern China was also 

conducted using the regional frequency analysis (He et al,2019). These scholars indicated that hot 

and wet extremes across East Asia have generally increased in magnitude and frequency over recent 

years. Under global warming, those extremes are expected to increase in the future. The benefits of 

regional over singular-location estimation are more significant on the distribution tails, which are 

concerned by many potential implementations, including the preparation of weather-related 

emergency purposes and the performance and construction of water reservoirs.  

The L-moment method is the standard approach for defining such homogeneous regions 

since it uses an algorithm, which is statistically efficient and straightforward to implement (J. 

Hosking & Wallis, 1997). This study used the regional frequency analysis method with the L-moment 

approach to develop regional growth curves and improve estimates on the design values of extreme 

precipitation events in Peninsular Malaysia. This research study aims to develop a method for 

estimating the 00-h, 03-h, 06-h, 09-h, 12-h, 15-h, 18-h, and 21h maximum consecutive rainfall series 

in various regions using a weather model and evaluate the reliability and accuracy of the goodness-

of-fit tests for rainfall and their uncertainty analysis. This information perceived from the study may 

provide beneficial probability distribution upshots for extreme rainfall events. 

 

2. Data and Study Area 
 

The study area considered was West Malaysia, also known as Peninsular Malaysia, which 

incorporates 131794 km2. Malaysia is a country near the equator; thus, it experiences hot and humid 

weather with daily temperature ranges from 25.5°C to 35°C. It is in the northern latitude between 1° 

and 6°N and the eastern longitude from 100° to 103° E. The three-hourly precipitation totals 

measured at 32 stations operated by the Department of Irrigation and Drainage Malaysia and satellite 

data from the Tropical Rainfall Measuring Mission (TRMM) were used (Table 1). The data set was 

the observations spanned the period from 1998 to 2014; there were no missing values in the dataset. 

Samples of three hourly maximum annual precipitation amounts were drawn from each station's 

records and examined as extreme precipitation events. Table 1 provides the basic information of each 
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station, such as station name, station abbreviation, state, position based on latitude, longitude, 

altitude, and the mean annual precipitation. 
 

 

 

 

 

3. Methods 

 

3.1 Ward's Clustering Process 

 
Cluster analysis is a fundamental multivariate statistical analysis method to divide a data set into groups 

and efficiently used for regional frequency analysis to form regions. Cluster analysis is often referred 

to as classification analysis or numerical taxonomy.  In cluster analysis, no prior group or cluster 

membership knowledge exists for any of the objects. Cluster analysis requires problem formulation, 

distance calculation selection, clustering method selection, number of clusters determination, profile 

cluster understanding, and lastly, validity evaluation of clustering. Clustering processes can be 

hierarchical, non-hierarchical, or a two-step method in cluster analysis. In cluster analysis, the creation 

of a tree-like structure characterizes a hierarchical technique. 

 

A hierarchical clustering method minimizing the Euclidean distance in site characteristics space within 

each cluster is Ward's method for determining homogeneous regions in regional frequency analysis 

(Rostami, 2013). This method is often known as the "low variance form" of Ward's hierarchical cluster 

system. This method is distinct from other approaches since it uses a variance approach methodology 

to measure the differences between clusters. Ward's clustering method is very efficient for clusters as 

membership is evaluated by calculating the total sum of squared deviations from a cluster mean. The 

fusion requirement is that the error sum of squares should be increased to the smallest possible. In this 

study, the site characteristics used were latitude, longitude, elevation, and mean annual precipitation. 

All the data were transformed to get the rescaled data range from 0 to 1 before applying the hierarchical 

method of clustering Ward. The Euclidean distance or scale of the variables used in the study is very 

sensitive to most clustering algorithms (J. Hosking & Wallis, 1997). Therefore, to ensure that the ranges 

are comparable, the variables with large absolute values are normalized. The variables are rescaled such 

that their values would lie between 0 and 1 to prevent site-characteristics dominance (Malekinezhad & 

Zare-Garizi, 2014): 

 

𝑋𝑖𝑗
𝑁 =

𝑋𝑖𝑗−𝑋𝑖,𝑚𝑖𝑛

𝑋𝑖,𝑚𝑎𝑥−𝑋𝑖,𝑚𝑖𝑛
                                                         (1) 

 

where 𝑋𝑖𝑗 is the 𝑖𝑡ℎ attribute of 𝑗𝑡ℎ station, 𝑋𝑖,𝑚𝑖𝑛 is the minimum 𝑖𝑡ℎ attribute in all stations, 𝑋𝑖,𝑚𝑎𝑥 

is the maximum 𝑖𝑡ℎ attribute in all stations, and 𝑋𝑖𝑗
𝑁 is the normalized 𝑖𝑡ℎ attribute in all stations. 

Distance is a calculation of how far apart two objects are. The distance measures are small for cases 

that are alike. The standard version to form the distance measure uses squared Euclidean distance in 

Ward's clustering method (Lee et al., 2014). The formula of squared Euclidean distance is as follows:  

∑ (𝑎𝑗 − 𝑏𝑗)2𝑘
𝑗=1                                                              (2) 

 

where k denotes the number of variables, and a and b are two different clusters.  

 

3.2 Index Flood Procedure 
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The regional frequency analysis of extreme precipitation implemented is built on L-moments and is 

correlated with the "Flood index" system(Dalrymple, 1960) applied to hydrological data. The approach 

utilised is a scale invariance method, which means that the frequency distributions of the sites within 

a homogeneous region are identical except for a scale factor that is unique to each site. The population 

average at the location is the scale factor (J. Hosking et al., 1997). Consequently, quantiles of 

frequency 𝐹 at the site 𝑖 of a homogeneous region of 𝑁 sites can be determined as follows: 𝑄𝑖(𝐹) =
𝜇𝑖𝑞(𝐹) where 𝜇𝑖 is the scale factor or the mean at the site 𝑖. The regional quantities 𝑞(𝐹) form the 

"regional growth curve" defined by regional distribution of the reduced variable 𝑦𝑖𝑗 = 𝑥𝑖𝑗√𝑥𝑖 where 

𝑥𝑖𝑗 represents the annual maximum daily rainfall, 𝑥̅ is their mean at each site and 𝑗 = 1, 2, … , 𝑛𝑖, 𝑛𝑖, 

is the population of site 𝑖. The regional distribution parameters derive from all the at-site statistics of 

the homogeneous region. The study used the L-moment test to estimate these numbers.  

 

Table 1: Location of the stations used in the study. 

 
No. Stations Stations ID Latitude Longitude Altitude(m) MAP 

1 Air Itam 5302002 5.4063 100.2821 23 67.46 

2 Hospital Baling 5609072 5.6755 100.9768 71 91.62 

3 JKR Benta 4019001 4.0118 101.9686 89 75.85 

4 Besut 5424001 5.8290 102.5524 8 114.58 

5 Klinik Bkt Bendera 5402001 5.4189 100.2732 22 96.49 

6 Bkt Bentong 4219001 3.3926 101.8417 78 77.65 

7 Bt 8 Jln Setul 2819002 2.2547 102.1709 65 71.30 

8 Komp. Peng Chaah 2230001 2.2483 103.0408 30 55.25 

9 Bkt Durian, Chalok 5328002 5.3903 102.8236 17 101.45 

10 Chengkau 2521050 2.5581 102.1251 44 83.99 

11 Chinchin 2224038 3.1309 101.7108 41 69.42 

12 SM. Sul. Omar Dungun 4734079 4.7548 103.4182 13 106.34 

13 Ladang Edinburgh 3116006 3.1544 101.7151 63 91.62 

14 Emp. Genting Klang 3217002 3.2051 101.7152 105 86.51 

15 Stor JPS Johor Bahru 1437116 1.4927 103.7414 37 87.10 

16 Kalong Tengah 3416002 3.4444 101.6570 48 80.24 

17 Stor JPS K. Terengganu 5331048 5.3296 103.1370 13 93.58 

18 Kampung Laloh 5322044 2.1887 103.1945 54 77.51 

19 Ngolang 6402008 6.4414 100.1986 8 57.61 

20 Padang Besar 6603002 6.6569 100.3097 63 61.44 

21 Padang Katong 6401002 6.4458 100.1875 12 60.84 

22 Padang Sanai 6306031 6.3430 100.6903 48 65.52 

23 Pekan Merlimau 2124037 2.1486 102.4305 10 79.81 

24 Politeknik PD 2418034 2.4278 101.8708 82 95.70 

25 Parit Madirono 1732001 1.7139 103.2791 3 91.99 

26 Stor JPS Raub 3818054 3.7935 101.8575 144 65.19 

27 Emp. Semenyih 3018101 3.0786 101.8806 88 81.59 

28 Simpang Mawai 1839196 1.9167 103.9653 9 89.18 

29 Kampung Tandak 5920012 5.9656 102.0166 10 87.57 

30 Tanjong Malim 3615003 3.6833 101.5236 42 81.18 

31 Ulu Kinta 4611001 4.6806 101.1694 75 75.12 

32 Upper Chiku 4721001 4.7653 102.1736 152 79.15 

 
 

3.2  L-moments Theoretical Background 

 

In 1997, Hosking and Wallis characterized L-moments as a linear function of probability-weighted 

moments (PWMs), robust to outliers and essentially unbiased for small samples. Greenwood et al. 

(1979) formally described the PWMs of order r as:  

𝛽𝑟 = ∫ 𝑥(𝐹)𝐹𝑅𝑑𝑓                                                                     (3) 
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where F = F(x) is a cumulative distribution function, x(f) is an inverse distribution function, and r = 

0, 1, 2, ... is a non-negative integer. The first four L-moments, expressed as linear combinations of 

PWMs, are:  

𝛽0 = 𝑛−1 ∑ 𝑥𝑗:𝑛

𝑛

𝑗=1

 

𝛽1 = 𝑛−1 ∑
𝑗 − 1

𝑛 − 1
𝑥𝑗:𝑛                                                                            (4)

𝑛

𝑗=1

 

𝛽2 = 𝑛−1 ∑
(𝑗 − 1)(𝑗 − 2)

(𝑛 − 1)(𝑛 − 2)
𝑥𝑗:𝑛

𝑛

𝑗=1

 

𝛽3 = 𝑛−1 ∑
(𝑗 − 1)(𝑗 − 2)(𝑗 − 3)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
𝑥𝑗:𝑛

𝑛

𝑗=1

 

L-moments can be estimated using the PWM: 

𝑙1 = 𝛽0 
𝑙2 = 2𝛽1 − 𝛽0                                                                                                (5) 

𝑙3 = 6𝛽2 − 6𝛽1 + 𝛽0 
𝑙4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0 

 

3.3 Regional Frequency Analysis using L-moment 
 

In 1993, Hosking and Wallis identified the following four steps to explain the RFA procedure: data 

screening, designing the homogeneous region, selecting an appropriate probability distribution, and 

estimating the proper probability distribution. Data anomalies usually must go through data screening 

before applying any statistical analysis. In this research, we checked for the stationarity and 

independence test for the data sets. Sites discordant with the population have been defined using a 

discordance measure based on L-moments (Hosking & Wallis, 1993) and investigated for errors or 

sources of possible non-reliability in measurements. To determine an unusual site for each region in 

this study, the discordancy measure, 𝐷𝑖, which based on the L-moments, was proposed. 𝐷𝑖 is defined 

as: 

𝐷𝑖 =
1

3
(𝑢𝑖 − 𝑢̄)𝑇𝑠−1(𝑢𝑖 − 𝑢̄)                                                      (6) 

where 𝑢𝑖 is the vector of L-moments, Lcv, Lcs, and Lck, for a site i: 

𝑆 = (𝑁𝑠 − 1)−1(𝑢𝑖 − 𝑢̄)(𝑢𝑖 − 𝑢̄)𝑇                                         (7) 

𝑢̄ = 𝑁𝑠
−1 ∑ (𝑢𝑖)

𝑁𝑠
𝑖=1                                                          (8) 

S is the sample covariance matrix, 𝑢̅ represents the unweighted regional average of L-moments ratio 

for each region, and  𝑁𝑠 refers to the sum number of sites. Therefore, if 𝐷𝑖 exceeds 3 for each station, 

the site is considered as a discordant station. 

 

 

3.3.1 Homogeneous Region Test 
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The next step in designing the RFA is the allocation of the sites to regions. The study employed the 

statistical homogeneity test in which the weighted average L-moment statistics are the representative 

parameters of a region. It aims to validate the homogeneity of a region (a group of stations) 

concerning the L-moment ratios.  

Thus, the regional L-moments and the L-moment ratios for a region of 𝑁 site having each 𝑛𝑖 

length recording calculated as follows:  

 

 𝑡𝑟̅ =
∑ 𝑛𝑖𝑡𝑟

(𝑖)𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

                                                          (9) 

𝑙𝑟̅ =
∑ 𝑛𝑖𝑙𝑟

(𝑖)𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

                                                           (10) 

 

where: 𝑡𝑟
(𝑖)

, 𝑙𝑟
(𝑖)

are values of 𝑡𝑟 and 𝑙𝑟 at the site 𝑖. 
The heterogeneity test Hv as computed as:  

 

𝐻𝑉 =  
𝑉𝑜𝑏𝑠−𝜇𝑣

𝑣
                                                           (11) 

 

where 𝑉𝑜𝑏𝑠 is the observed value of either𝑉1, 𝑉2 or 𝑉3; the mean and standard deviation of 𝑉obtained 

through simulations are 𝜇𝑣 and 𝜎𝑣. Variable 𝐻 allows the dispersion of results to be measured relative 

to those of the simulations. According to Hosking & Wallis (1997), a region is acceptably 

homogeneous if 𝐻 < 1, possibly heterogeneous if 1 ≤ 𝐻 < 2, and certainly heterogeneous if  𝐻 ≥
2. 𝑉𝑜𝑏𝑠is calculated from the regional data and is based on the corresponding V-statistics.  

 

 

3.3.3 Goodness-of-fit Measurement 
 

Hosking and Wallis (1997) suggested two approaches for selecting the distribution that best matched 

the data: the L-moment ratio diagram and the Z-test. The L-moment ratio diagram uses unbiased 

estimators (J. Hosking et al., 1997; Vogel & Fennessey, 1993). The L-moment ratio diagram plots the 

distribution function's measured values L-Cs and the observed values L-Ck. The curves represent the 

candidate distribution's hypothetical relations between the L-Cs and L-Ck. The L-moment ratio 

diagram discriminates between the candidate probability distributions in describing the regional 

details (J. R. M. Hosking, 1990; J. R. M. Hosking et al., 1997). The diagram used for regional knowledge 

as a part of the probability distribution method (ÖnÖz et al., 1995; PEEL et al., 2001; Schaefer, 1990; 

Vogel, Thomas, et al., 1993; Vogel & Fennessey, 1993; Vogel et al., 1996). J. Hosking & Wallis, 1997 

proposed a test to see how well the L-Cs and L-Ck of the fitted probability distribution compared with 

the observed information to the regional average L-Cs and L-Ck. 

The measure of fitness for each selected probability distribution is determined as follows: 

 

𝑍𝐷𝐼𝑆𝑇 =
(𝜏4

𝐷𝐼𝑆𝑇−𝜏4
𝑅)

𝜎4
                                                          (12) 

 

where 𝜏4
𝐷𝐼𝑆𝑇 represents the L-Ck value of the fitted distribution, 𝜏4

𝑅 represents the weighted regional 

average L-Ck, and 𝜎4 represents the standard deviation of 𝜏4
𝑅 obtained from the simulation of the 

Kappa probability distribution. If the computed value of 𝑍𝐷𝐼𝑆𝑇 is equal to zero, so the probability 

distribution is the most suitable fit. If the computed value of 𝑍-statistic is less than 1.64 at a 90% 

confidence level (i.e., |𝑍𝐷𝐼𝑆𝑇| ≤ 1.64), it indicates that the distribution qualifies the goodness of fit 

criteria. If there is more than one distribution that qualifies the criteria, the most suitable distribution 

has the minimum |𝑍𝐷𝐼𝑆𝑇| value. 

 

3.3.4  Estimation of Regional Rainfall Quantiles 
 

165



iCMS2021: 4 - 5 August 2021 

 

 

The regional quantile estimates 𝑞̂(𝐹) with varying non-exceedance probability 𝐹 for the GNO, GEV, 

GPA, GLO, and PE3 distributions based on L-moment. For fitted regional frequency distributions, 

the quantile function is usually written as 𝑞̂(⋅). By combining the estimates of 𝜇𝑖 and (⋅), the quantile 

estimate at location 𝑖 is created. The quantile estimate with non-exceedance probability F has the 

following mathematical form:  

𝑄̂(𝐹) = 𝑙1
𝑖 𝑞̂(𝐹)                                                      (13) 

 

For each site, 𝑄̂𝑖(𝐹) for various periods, extreme precipitations quantile estimates obtained by simply 

multiplying regional quantile estimates, 𝑞̂(𝐹) to the average sample (𝑙1
(𝑖)

) of each site in the 

respective area. 

 

4. Result 
 

The first step in the RFA method in terms of discordance measures classified the stations whose 

statistical parameters differ markedly in the whole stations as per the description provided in the 

methodology section. Table 2 shows the 32 stations' discordant measurement values ranging from 

0.11 to 4.25 and from 0.15 to 3.43 for the observation data and TRMM3B42. In the case in which 

there are stations with discordant measurement, Hosking and Wallis (1997) suggested the regional 

adjustment to achieve the "acceptably homogeneous" classification for all regions. The modification 

options are as follows: (i) split an area into two or more new regions, (ii) migrate one or more sites 

from one area to another, or (iii) delete one or more sites from the data collection by using the method 

calculated with the required number of groups (clusters) (Malekinezhad et al., 2014). All the 

discordance values for each area in each area are less than 3, indicating that the analysis did not 

include any outlier, as shown in Figure 1. Table 3 outlines the cluster-based measures of 

heterogeneity. 

L-moment diagrams aid in the identification of sites with similar flood frequency behaviour 

and the definition of the statistical distribution most likely to appropriately reflect this behaviour. The 

L-moment ratio diagrams for homogeneous regions in Peninsular Malaysia are shown in Figures 2 

and 3. (I, II, III, and IV). 

 

Figure 1. Homogeneous regions based on cluster analysis. 
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The sample points should be distributed above and below the theoretical line of an acceptable 

distribution; thus, the sample L-moments are unbiased. The following L-moment diagrams show that 

region I and Region II distributions of observation data are GLO, GEV, GNO, and PE3. On the other 

hand, the distributions for region I and Region II of TRMM 3B42 are PE3 and GPA, GLO, GEV, 

GNO, PE3, and GPA. Meanwhile, for Region III, the distributions are GLO and GEV for the 

observation data, GLO, GEV, GNO, and PE3 for TRMM 3B42. As for Region IV, the distributions 

for both the observation data and TRMM 3B42 are GEV, GNO, PE3, and GPA. 

Since the field was homogenous, the 𝑍𝐷𝐼𝑆𝑇 statistics determined regional distribution 

between the GLO, GEV, GNO, PE3, and GPA distributions using 1000 simulations of the Kappa 

distribution. Table 4 shows each distribution value for the latter and the potential L-kurtosis values 

for each distribution. 
 

Table 2: Discordancy Measures of each site for observation and TRMM3B42 

 
Stations  Observation TRMM 3B42 

 n 𝒍𝟏 𝝉 𝝉𝟑 𝝉𝟒 𝑫𝒊 𝒍𝟏 𝝉 𝝉𝟑 𝝉𝟒 𝑫𝒊 

Air Itam 15 67.4600 0.1242 -0.0132 0.1266 0.31 26.1257 0.2321 0.2108 0.0965 1.24 

Hospital Baling 15 91.6200 0.1087 -0.1306 0.0644 0.81 27.2063 0.2023 0.2393 0.1105 0.40 

JKR Benta 15 75.8533 0.3389 0.5183 0.5396 3.86 * 28.825 0.1459 0.1231 -0.0478 1.62 

Besut 15 114.580 0.2205 0.3509 0.0886 1.13 34.7251 0.1502 0.0231 0.1184 0.42 

Klinik Bkt 

Bendera 

15 96.4933 0.2007 0.4150 0.4384 0.99 23.002 0.2103 0.3040 0.0846 1.10 

Bkt Bentong 15 77.6533 0.1603 0.0682 0.1603 0.17 27.8987 0.1071 0.0262 0.0197 1.53 

Bt 8 Jln Setul 15 71.3000 0.1187 -0.0488 -0.0703 0.92 31.8265 0.2086 -0.0022 0.1550 1.28 

Komp. Peng 
Chaah 

15 55.2467 0.1191 0.2847 0.2349 0.78 16.8521 0.2226 0.2545 0.3730 3.32 * 

Bkt Durian, 

Chalok 

15 101.4533 0.232 0.2724 0.2854 0.64 36.6806 0.1717 -0.103 -0.016 1.52 

Chengkau 15 83.9867 0.1295 0.2428 0.4240 1.47 25.6587 0.2418 0.2338 0.1682 1.33 

Chinchin 15 69.4200 0.1267 0.3586 0.1826 1.09 20.2422 0.2346 0.0529 0.1022 1.76 

SM. Sul. Omar 

Dungun 

15 106.340 0.1705 0.1044 0.0430 0.45 25.4319 0.1553 0.1037 0.0793 0.15 

Ladang 
Edinburgh 

15 91.6200 0.1087 -0.1306 0.0644 0.81 26.3200 0.1842 0.2910 0.2626 1.12 

Emp. Genting 

Klang 

15 86.5133 0.1264 -0.0167 -0.0865 1.02 25.5545 0.1389 0.1626 0.1604 0.75 

Stor JPS Johor 

Bahru 

15 87.1000 0.1634 0.2665 0.2191 0.11 14.8132 0.1746 -0.0356 0.0142 0.87 

Kalong Tengah 15 80.2400 0.1557 0.3663 0.2431 0.59 25.5545 0.1389 0.1626 0.1604 0.75 

Stor JPS K. 
Terengganu 

15 93.5800 0.1493 0.0680 0.2738 0.45 29.1358 0.1618 0.2569 0.1684 0.53 

Kampung Laloh 15 77.5133 0.1066 -0.0427 0.0472 0.46 34.6099 0.1849 0.1364 0.0580 0.28 

Ngolang 15 57.6133 0.2382 0.2174 0.0486 1.69 25.5235 0.1795 0.3599 0.1541 0.99 

Padang Besar 15 61.4400 0.1814 0.2157 0.1139 0.24 28.1332 0.1636 0.1853 0.0472 0.48 

Padang Katong 15 60.8400 0.1599 0.1976 0.0338 0.49 24.2658 0.2004 0.3519 0.1955 0.84 

Padang Sanai 15 65.5267 0.1806 -0.2120 0.3501 4.25 ** 26.4143 0.196 0.3115 0.1118 0.73 

Pekan Merlimau 15 79.8133 0.1631 0.2582 0.2717 0.16 17.0031 0.1832 0.019 0.2029 1.12 

Politeknik PD 15 95.7000 0.2051 0.5510 0.4990 1.93 20.1638 0.2019 0.0922 0.1969 0.73 

Parit Madirono 15 91.9933 0.2642 0.3722 0.2072 1.42 13.4684 0.1458 0.0114 0.1079 0.48 

Stor JPS Raub 15 65.1867 0.1416 0.2668 0.1288 0.38 28.0152 0.149 0.1684 0.1058 0.33 

Emp. Semenyih 15 81.5867 0.1354 0.2098 0.2219 0.21 26.0919 0.1751 0.28 0.2123 0.67 

Simpang Mawai 15 89.1800 0.1603 0.3903 0.2355 0.68 15.8041 0.1823 0.012 -0.0085 1.02 

Kampung 

Tandak 

15 87.5667 0.0629 -0.1014 0.2543 1.97 34.2786 0.1136 -0.2353 0.1026 3.43 * 

Tanjong Malim 15 81.1800 0.1265 0.1147 -0.0475 0.83 21.7665 0.1728 0.0613 0.0493 0.26 
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Ulu Kinta 15 75.1200 0.1222 0.0368 0.2336 0.45 25.6702 0.1424 0.2124 0.0936 0.71 

Upper Chiku 15 79.1533 0.0657 0.0494 -0.0243 1.24 30.8349 0.1551 0.1683 0.1170 0.21 

 

 

Table 5(a) to 5(d) show the extreme precipitation regional quantile estimates (growth curve 

estimates, q (̂F)) for return periods of 2, 5, 10, 20, 50, 100, 500, and 1000 years of Region I, II, III, 

and IV, respectively. Figures 4(a) to 4(d) display the graphical representation of growth curve 

estimates by calculating return periods based on non-exceedance probabilities along the horizontal 

axis and geographic frequency distribution quantities (growth curves) on the vertical axis.  

Table 5(a) and Figure 4(a) indicate that growth curves for different distributions for return 

period up to 50 years reflect almost a close behaviour for each data. However, for the higher return 

periods, the quantile estimates of GLO are higher than other candidate distributions of Region I for 

observation data. For region I of satellite data, the quantile estimates of GNO have higher return 

periods than other distributions. Based on Table 5(b) and Figure 4(b), for Region II, the quantile 

estimates for lower return periods that are almost in the close agreement are GPE and GNO for 

observation and TRMM 3B42; however, for higher return periods, the quantile estimates for GLO 

are high. Meanwhile, according to Table 5(c) and Figure 4(c) for Region III, the quantile estimates 

for both observation and TRMM 3B42 are GLO. For Region IV, Table 5(d) and Figure 4(d) show 

that the quantile estimates for lower return periods are GEV and GNO for the observation. At the 

same time, the GLO gives a high return period. Concerning the TRMM 3B42, the candidate of 

quantiles estimates is GLO distribution. 

 
Table 3. Heterogeneity measures based on cluster method. 

 
Homogeneous  

Measurement 

Rain Gauge TRMM 3B42 

I II III IV I II III IV 

𝐻1 0.76 0.99 2.98 0.80       -1.20 1.19 0.05 -0.97 

𝐻2 2.29 2.08 1.33 0.42 -1.42 -0.05 1.38 -0.78       

𝐻3 2.18 2.75 1.06 0.39 -2.00 -1.19   0.74       -0.44 

 

 
 

Figure 4(a): Region I Quantile Function with 90% error bounds for Observation and TRMM 3B42 
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Figure 4(b): Region II Quantile Function with 90% error bounds for Observation and TRMM 3B42 

 

 
Figure 4(c): Region III Quantile Function with 90% error bounds for Observation and TRMM 3B42 

 

 
Figure 4(d): Region IV Quantile Function with 90% error bounds for Observation and TRMM 3B42 
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5. Conclusion 

 

In this study, by using the site characteristics and Ward's method, the hierarchical 

clustering method, based on minimizing the Euclidean distance in site characteristics space 

within each cluster, Peninsular Malaysia is divided into four acceptably homogeneous 

regions. The L-moment-based regional frequency analysis identifies that the regions under 

study are acceptably homogeneous. The finding on the regional distribution is a significant 

phase in the regional study. The 𝑍𝐷𝐼𝑆𝑇 statistics criteria are used to identify the most suitable 

regional distribution. The set of popular distributions in hydrological studies, namely GLO, 

GEV, GNO, PE3, and GPA distributions, four distributions, GNO, GLO, GEV, and GPA, 

are suitable candidates for the regional distribution. For the GNO, GLO, GEV, and GPA 

distributions, regional quantile estimates with non-exceedance probability F were derived. 

Equation xi can be used to calculate the quantile estimates for each site in the region. This 

study investigates whether the quantile estimates from the GNO, GEV, and GPA 

distributions are roughly identical until the 50-year return period, i.e., F = 0.99. For scientists 

and hydrologists, estimating high precipitation at ungauged sites with no flow data has 

become a serious challenge. By linking the parameters of the regional distribution to the 

available site features, reliable connections for observation data and satellite data can be 

constructed. The current research presents the b Forecasts of the quantile precipitation will 

assist managers in tackling the extreme rainfall-like situation and, by better preparation 

considering such predictions, to reduce possible losses. 
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