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PERFORMANCE OF MORTALITY RATES USING DEEP LEARNING 

APPROACH  

 
Mohamad Hasif Azim1 and Saiful Izzuan Hussain2  

Department of Mathematical Sciences, Faculty of Science and Technology, 

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia  

(2sih@ukm.edu.my) 
 
 

Mortality has a vital role in population dynamics and is critical in a wide variety of fields, 

including demography, economics, and social sciences. This study aims to model and compare the 

mortality rate using two different models; the Lee-Carter model and Deep Neural Network (DNN). 

The sample data used is the case of the United Kingdom population. Mortality rates were modeled 

with the Lee-Carter model and deviance goodness of fit were used to test the model's suitability of 

the data. Next, mortality rates are modeled with the Deep Neural Network (DNN) and both models 

are compared based on the mean square error (MSE) values. The results showed that the DNN 

model fits the best. Overall, we conclude that DNN approach appears to be a potential model to 

model and forecast population mortality. 

 

Keywords: Mortality, Deep Neural Network 

 

1.   Introduction 
 

The mortality rate is the ratio of deaths that occur in general due to certain factors in a population 

with the total population. In this 20th century, the mortality rate for each age group has decreased 

and at the same time increased life expectancy. The rate of mortality can provide a rough estimate of 

the probability of death of a person in the population in the future as well as the average future life 

of a person. Estimates and forecasts of future mortality rates are crucial in insurance companies in 

determining life insurance premiums. Insurance is a premium-based agreement in which the insurer 

commits to compensate a specified sum to the policyholder in the event of a loss (Anderson and 

Brown, 2005). The purpose of insurance is to shield the policyholder financially from any losses. 

The insurance companies bear the risk covered by the policy while the policy buyer will pay a sum 

of money known as a premium to the insurance companies for the risk coverage. Estimation of 

mortality rate plays an important role in determining the premium for insurance products. The entire 

number of policies experienced will change if the setting of premiums in the insurance policy does 

not accurately measure (Shinde and Raut ,2018).  

 

Several methods have been proposed in estimating mortality rates and among the model that has been 

widely applied in predicting mortality rates is Lee and Carter (1992). The Lee-Carter model is the 

most extensively used worldwide, most likely due to its robustness. The initial version employs 

singular-value decomposition (SVD) to derive three latent parameters from the log-force of 

mortality: a constant age component and a temporal component representing the mortality trend 

multiplied by an age-specific function.  Nowadays, the rapid and widespread development in the 

field of computer science has changed the environment and life in all aspects such as research and 

the world of work. Numerous studies conducted on the impact of data science on the insurance 

industry show how the use of high technology can improve risk management by reducing estimates 

in the rate of losses, claims, reserves and at the same time can increase profits. In this research, we 

employed deep neural network learning techniques to enhance the mortality rates model's prediction 

performance and compared with Lee Carter model. 
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2.   Literature Review 
 
Various previous studies have been conducted in estimating and modeling mortality rates. The Lee-

Carter model was first introduced by Lee and Carter in 1992 to model and predict the immortality of 

the United States. Since then, many researchers have introduced several adjustments to the Lee-

Carter model to develop forecasting and estimation models on more specific features (Hyndman and 

Ullah,2007). Another key aspect of the Lee-Carter model is it permits uncertainty in forecasting 

which is called longevity risk (Kamaruddin and Ismail, 2018). The continuity and development of 

the Lee-Carter model have been widely used in mortality forecasting and still applied today. More 

studies regarding Lee Carter could be found in Basnayake and Nawarathna (2017), Chavhan and 

Shinde (2016) and Taruvinga et al. (2017). 

 

Deprez et al. (2017) have shown that the use of machine learning can improve the estimation of 

mortality rates in mortality stochastic models such as the Lee-Carter model. They apply the 

regression tree boosting method in analyzing the weaknesses to estimate the mortality rate on both 

models and help to improve estimation and modeling based on the factors present in each individual. 

The application of deep learning in mortality rates also not left behind. Deep learning is part of 

machine learning. Deep learning is a representation learning technique that constructs complex 

models using deep hierarchies of learned covariates (Richman, 2018). Richman and Wüthrich (2018) 

used neural networks to extend the Lee-Carter model to multiple populations. Hainaut (2018) 

employed neural networks to identify the latent variables of mortality and forecast them using a 

random walk with drift.  
 

3.   Methodology 
 
3.1   Data Sample 

 

The sample data used in this paper is the mortality table for the United Kingdom. This dataset 

is public dataset and obtained from the human mortality database on the website www.mortality.org 

(Human Mortality Database). This data covers the mortality rate for each age group and for each year 

from 1950 to 2016. The age limit is set at the age of 99 years for each year. Our study focus on male 

dataset from 1950 to 2016. Dataset from 1950 to 2019 is used as training dataset. While dataset from 

2000 to 2016 is used as validation dataset. 

 

3.2   Lee-Carter Model 

 

The Lee-Carter model can be defined as the log force of mortality: 

 
𝑙𝑜𝑔(𝜇𝑥,𝑡) = 𝛼𝑥 + 𝛽𝑥𝜅𝑡 (1) 

 

with, 

 
𝜇𝑥,𝑡 = Mortality rate age x in period t 

  

𝛼𝑥 = Average mortality rate in age x 

  

𝛽𝑥 = Rate of change in mortality at age x 

  

𝜅𝑡 = Mortality rate index in year t 

 

This model is in the form of multiplication component in the equation, βx κt. The accuracy of this 

model's match with the data used will be determined by the deviance goodness of fit test. The Lee-
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Carter model will also be used as a benchmark in comparison to the DNN model to identify the best 

model choice based on the mean square error (MSE). 

 

3.3   Deviance goodness of fit test 

 

The deviance statistic can also be used to assess how well data is fitted with the model. Deviance, 

D can be defined as follows: 

 
𝐷 = −2 (𝑙𝑜𝑔 𝐿𝑓 − 𝑙𝑜𝑔 𝐿𝑠) (2) 

 
𝐷~𝜒𝑛−𝑝

2  

with, 

 
Lf = the likelihood function of model formed 

 

Ls = the likelihood under the “saturated model” 

 

n = number of data matched 

 

p = number of estimated parameters 

 

 

Deviance measure the difference between a model estimate and a given data. Deviance has a chi-

square distribution with n , p degree of freedom. The hypotheses for this match accuracy test are as 

follows: 

 
H0 : Model is fit to the data 

 

H1 : Model is not fit with the data 

 

 

 

3.4  Deep Neural Network (DNN) 

 

The neural network model used is the Deep Neural Network (DNN) which consists of several layers 

of nonlinear functions in producing optimal predictions. In this model, there are two categories of 

variables that are used as input to the neural network; year and age. Both categories are modeled 

using the embedding layer which maps each category into the input of the matrix. The structure of 

the neural network model is briefly described as follows: 
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Figure 1 Structure of Deep Neural Network (DNN) 

 

After each category is included in the embedding layer, the vectors of the two variables will be 

combined into a matrix with the input to the neural network model in predicting mortality rate in year 

t, and age x. In detail, the measurement of output will go through several parts in the hidden layer 

that has activation functions. The number of hidden layers used in this study is three. While activation 

functions used in this study is two; Rectified Linear Unit (ReLu) for the first layer and second layer 

and Sigmoid function for the last layer. The equations of the functions found in the hidden layer can 

be shown as 

a. Rectified Linear Unit (Relu) 

𝜎(𝑥) = 𝑚𝑎𝑥{0, 𝑥} (3) 

b. Sigmoid Function 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

 

In general, the process of producing a Y output can be written as below: 

 

Suppose 𝑍(𝑖) = matrix in hidden layer-i and 𝑋 = 𝑍(0) which the input. Therefore, 

 
𝑍(1) = 𝜎1(𝑊

(0)𝑋 + 𝑏(0)) (5) 

𝑍(2) = 𝜎2(𝑊
(1)𝑍(1) + 𝑏(1))  

…  

𝑍(𝑖) = 𝜎𝑖(𝑊
(𝑖−1)𝑍(𝑖−1) + 𝑏(𝑖−1))  

𝑌̂(𝑋) = 𝑊(𝑖)𝑍(𝑖) + 𝑏(𝑖) (6) 

 

with, 
𝜎𝑖 = Activation Function in i-hidden layer 
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𝑊(𝑖) = Weighted Matrix 

 

𝑏(𝑖) = Bias 

𝑌̂(𝑋) = Output  

 

There are also methods used in the neural network model that based on the back-propagation 

approach. Back-propagation is an algorithm for estimating the weights found in neurons in a neural 

network. This algorithm is used to produce minimal errors in output Y. In the early stages of the 

learning process, weighting values are given at random, and errors are calculated through subtraction 

of output results with actual values. Next, the weight of each neuron will be changed based on the 

given error value. 

 

3.5   Mean Square Error (MSE) 

 

MSE value is used to evaluate the forecasting performance in the mortality model. This value can 

be described using Equation (7) 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝜇𝑥,𝑡 − 𝜇̂𝑥,𝑡)

2

𝑛

𝑛=1

 (7) 

With, 

 
n = Sample size 

 

𝜇𝑥,𝑡 = Actual mortality rate 

 

𝜇̂𝑥,𝑡 = Estimated mortality rate 

 

 

In this study, the selection of the best models in forecasting mortality rates is based on the lower 

mean square error (MSE) between the models, Lee-Carter and DNN model. 

 

4. Results and Discussion  
 

4.1   Deviance goodness of fit test 

 
Table 2 Deviance for Lee Carter model  

 

 Deviance Degree of freedom P-value 

United Kingdom 1.4727 4752 1 

 

 

Table 2 shows the deviance of the Lee-Carter model from 1950 to 1999. The deviance value 

is intended to measure the fit of the data match with the model. The smaller the deviance value means 

the better the data fit with the model. The accuracy test of the deviance match conducted with the 

deviance is a chi-squared distribution with a degree of freedom 4752. The results of the test 

performed show that the p-value is greater than the significance level of 0.05 which proves the Lee-

Carter model matches the data used. 

 

4.2   Forecasting Mortality 

 

Figure 2 illustrated the estimated rate of mortality for male in 2000. The values for the DNN model 

seem to be approximately near to the actual value for the male population. The estimation values for 

the Lee-Carter model seem slightly far for the age between 40 and 50 years old.  
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Figure 2: Mortality prediction graph for the United Kingdom in 2000 

 

 

4.3   Mean Square error 

 
Table 3: Mean Square Error 

 
 Lee-Carter Deep Neural Network (DNN) 

United Kingdom 0.2624 0.0982 

 

The table above shows the results of the mean square error demonstrated by both models on the 

mortality force for the year from 2000. United Kingdom’s mortality rates show the low mean square 

error value on the DNN model compared to the Lee-Carter model and can be concluded that the DNN 

model is the best.  

 

5.  Conclusions  
 

The objective of mortality study is expected to be more on improving socio-economics through data 

analysis and advanced methodology for accurate results. In this research, mortality modeling and 

forecasting were performed using Lee-Carter and DNN models. The results show that the DNN 

model successfully generates the lower value of mean square errors and can accurately project 

mortality in United Kingdom This can conclude DNN has a good potential to be developed and 

employed for mortality rates modeling in the future.Our future study is to apply and compare Lee-

Carter and DNN models for another countries.  
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