ISOLATION OF ANTIMICROBIALLY AND ANTIOXIDANT COMPOUNDS FROM THE LEAVES OF *ENTADA SPRIRALIS* RIDL. (SINTOK) USING CHROMATOGRAPHIC TECHNIQUE

ROHAZLIN BINTI MOHAMAD

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	Х

Page

xi

CHAPTER 1 INTRODUCTION

ABSTRAK

1.1	Background of study Problem statement	1
1.2	Significance of study	3
1.3	Objectives of study	4
1.4	Scope of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Plant s	secondary metabolite	6
	2.1.1	Alkaloid	7
	2.1.2	Terpene	7
	2.1.3	Phenolic	8
2.2	Family	y Leguminosae	8
2.3	Struct	ure identification of compound in some Entada species	9
2.4	Antio	kidant properties of plant extract	14
2.5	Chromatographic process		15
	2.5.1	Layer chromatography	16
		2.5.1.1 Thin layer chromatography	18
		2.5.1.2 Preparative thin layer chromatography	21
		2.5.1.3 Centrifugal thin layer chromatography (Chromatotron)	22
	2.5.2	Column chromatography	23

CHAPTER 3 METHODOLOGY

Method of sample preparation and analysis		25
3.1.1	Preparation of extract	25
3.1.2	Thin layer chromatographic procedure	25
3.1.3	Bio-autographic screening for antioxidant from extract	26
	3.1.3.1 Preparation of DPPH spraying reagent	26
	3.1.3.2 Spraying of DPPH reagent on TLC plate	26
	3.1.1 3.1.2	 3.1.1 Preparation of extract 3.1.2 Thin layer chromatographic procedure 3.1.3 Bio-autographic screening for antioxidant from extract 3.1.3.1 Preparation of DPPH spraying reagent

Page

3.1.4	Preparative thin layer chromatography for purification	27
3.1.5	Fourier transform infrared (FTIR) spectroscopy	28
	3.1.6 Nuclear Magnetic Resonance (NMR) spectroscopy	28

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	1 Antioxidant screening test		29
	4.1.1	Antioxidant screening test on petroleum ether (PE) extract	29
	4.1.2	Antioxidant screening test on dicholomethane (DCM) extract	31
	4.1.3	Antioxidant screening test on methanol (MeOH) extract	33
4.2 Preliminary structure elucidation	ninary structure elucidation	36	
	4.2.1	Isolated compound from dichloromethane (DCM) extract	38
	4.2.2	Isolated compound from methanol (MeOH) extract	44
СНА	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	
5.0 Conclusion and recommendation		54	
CITI	ED REF	FRENCES	56

CITED REFERENCES	56
APPENDICES	59
CURRICULUM VITAE	63

LIST OF TABLES

Table	Caption	Page
2.1	Isolated compound in some Entada species	11
4.1	Retention factor values for dichloromethane extract in PE:DCM ; 0:10 (v/v) solvent system	32
4.2	Retention factor values for dichloromethane extract in DCM:MeOH ; 10:0 (v/v) solvent system	34
4.3	Summarization of all retention factor value of antioxidant and antimicrobial of separated compound	36
4.4	NMR result (¹ H and ¹³ C) of dichloromethane extract and triterpenoid saponin from <i>Astragalus wiedemannianus</i> Fischer	40
4.5	NMR result (¹ H and ¹³ C) of methanol extract for compound of 0.050 retention factor from <i>Ilex kudingcha</i>	44
4.6	NMR result (¹ H and ¹³ C) of methanol extract for compound of 0.890 retention factor from <i>Ilex kudingcha</i>	53

ABSTRACT

ISOLATION OF ANTIMICROBIALLY AND ANTIOXIDANT COMPOUNDS FROM THE LEAVES OF *ENTADA SPRIRALIS* RIDL. (SINTOK) USING CHROMATOGRAPHIC TECHNIQUE.

this study, focus is isolation In subject to on of Entada *Spiralis* leaves extract. Different crude extract have been prepared for isolation according to different polarities of solvent, non-polar, medium polar and polar respectively. In each extraction, the best solvent system has been determined in order to obtain the best separated compounds by using thin layer chromatography. The solvent system in petroleum ether extraction is 5:5 (v/v); PE:DCM, while 0:10 (v/v); PE:DCM for extraction by dichloromethane and 10:0 (v/v); DCM:MeOH in methanol extraction. All the crude extract have been tested for preliminary phytochemical investigation of antimicrobially active compounds against bacteria, name as Staphylococcus aureus ATCC33591 SA and Staphylococcus epidermis ATCC 12228 (SE) using agar diffusion method, and results shows two separated compounds from methanol extract have been detected at retention factor of 0.050 and 0.890. In this study also, the separated compound were further analyzed for antioxidant screening by preparative-thin layer chromatography (p-TLC). Then, isolation has been done to preliminary structural elucidation of the separated compound by analysis using FTIR and NMR. Five compounds from different retention time are point up as antioxidant compounds in DCM extract five compounds also positively detected as antioxidant compounds in methanol extract. By the way, only two compounds have been selected in DCM extract for instrumentation used analysis since they show a single band after undergo isolation. The retention factor of isolated compounds is 0.124 and 0.959. Same detection goes to methanol extract and in addition, the antioxidant compounds also proven as antimicrobial compounds. Both are in retention factor of 0.050 and 0.890. Meanwhile, the petroleum ether extract demonstrate that most of its separated compounds are antioxidant but they are not being further isolated since the separations are not well separated. Study done by previous student also prove the of DCM and MeOH extract were terpenoid compound by vanillin/H₂SO₄ spraying test. Two compounds from DCM isolated compounds are preliminary structural elucidated and prove that they are the same compound. Moreover the FTIR and NMR spectrum of (¹H and ¹³C) from Astragalus wiedemannianus Fischer species are in agreement with FTIR and NMR spectrum of DCM isolated compounds; hence they are classified as triterpene saponin. The same compounds suggested for two isolated compounds from methanol extract, but they are in agreement with FTIR and NMR result (¹H and ¹³C) from *Ilex kudingcha* species.